Posterior Contraction Rates for Stochastic Block Models

被引:0
|
作者
Prasenjit Ghosh
Debdeep Pati
Anirban Bhattacharya
机构
[1] Texas A&M University,Department of Statistics
来源
Sankhya A | 2020年 / 82卷 / 2期
关键词
Bayesian asymptotics; Stochastic block models; Clustering; Multinomial-Dirichlet; Networks; Posterior contraction; Random graphs; Primary 62G07; 62G20; secondary 60K35;
D O I
暂无
中图分类号
学科分类号
摘要
With the advent of structured data in the form of social networks, genetic circuits and protein interaction networks, statistical analysis of networks has gained popularity over recent years. The stochastic block model constitutes a classical cluster-exhibiting random graph model for networks. There is a substantial amount of literature devoted to proposing strategies for estimating and inferring parameters of the model, both from classical and Bayesian viewpoints. Unlike the classical counterpart, there is a dearth of theoretical results on the accuracy of estimation in the Bayesian setting. In this article, we undertake a theoretical investigation of the posterior distribution of the parameters in a stochastic block model. In particular, we show that one obtains near-optimal rates of posterior contraction with routinely used multinomial-Dirichlet priors on cluster indicators and uniform or general Beta priors on the probabilities of the random edge indicators. Our theoretical results are corroborated through a small scale simulation study.
引用
收藏
页码:448 / 476
页数:28
相关论文
共 50 条
  • [1] Posterior Contraction Rates for Stochastic Block Models
    Ghosh, Prasenjit
    Pati, Debdeep
    Bhattacharya, Anirban
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2020, 82 (02): : 448 - 476
  • [2] MINIMAX RATES OF COMMUNITY DETECTION IN STOCHASTIC BLOCK MODELS
    Zhang, Anderson Y.
    Zhou, Harrison H.
    [J]. ANNALS OF STATISTICS, 2016, 44 (05): : 2252 - 2280
  • [3] Convergence of the groups posterior distribution in latent or stochastic block models
    Mariadassou, Mahendra
    Matias, Catherine
    [J]. BERNOULLI, 2015, 21 (01) : 537 - 573
  • [4] Block sampler and posterior mode estimation for asymmetric stochastic volatility models
    Omori, Yasuhiro
    Watanabe, Toshiaki
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (06) : 2892 - 2910
  • [5] Adaptive posterior contraction rates for the horseshoe
    van der Pas, Stephanie
    Szabo, Botond
    van der Vaart, Aad
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 3196 - 3225
  • [6] Posterior Contraction Rates of Density Derivative Estimation
    Shen W.
    Ghosal S.
    [J]. Sankhya A, 2017, 79 (2): : 336 - 354
  • [7] Posterior contraction rates for support boundary recovery
    Reiss, Markus
    Schmidt-Hieber, Johannes
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (11) : 6638 - 6656
  • [8] Bayesian sieve methods: approximation rates and adaptive posterior contraction rates
    Yi, Taihe
    Wang, Zhengming
    Yi, Dongyun
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2018, 30 (03) : 716 - 741
  • [9] Strong posterior contraction rates via Wasserstein dynamics
    Dolera, Emanuele
    Favaro, Stefano
    Mainini, Edoardo
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2024, 189 (1-2) : 659 - 720
  • [10] Posterior Contraction Rates of the Phylogenetic Indian Buffet Processes
    Chen, Mengjie
    Gao, Chao
    Zhao, Hongyu
    [J]. BAYESIAN ANALYSIS, 2016, 11 (02): : 477 - 497