Posterior contraction in sparse generalized linear models

被引:6
|
作者
Jeong, Seonghyun [1 ]
Ghosal, Subhashis [2 ]
机构
[1] Yonsei Univ, Dept Stat & Data Sci, 50 Yonsei Ro, Seoul 03722, South Korea
[2] North Carolina State Univ, Dept Stat, 5109 SAS Hall,2311 Stinson Dr, Raleigh, NC 27695 USA
关键词
Fractional posterior; Generalized linear model; High-dimensional regression; Posterior contraction rate; Sparsity-inducing prior; CONVERGENCE-RATES; REGRESSION; FRAMEWORK;
D O I
10.1093/biomet/asaa074
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study posterior contraction rates in sparse high-dimensional generalized linear models using priors incorporating sparsity. A mixture of a point mass at zero and a continuous distribution is used as the prior distribution on regression coefficients. In addition to the usual posterior, the fractional posterior, which is obtained by applying Bayes theorem with a fractional power of the likelihood, is also considered. The latter allows uniformity in posterior contraction over a larger subset of the parameter space. In our set-up, the link function of the generalized linear model need not be canonical. We show that Bayesian methods achieve convergence properties analogous to lasso-type procedures. Our results can be used to derive posterior contraction rates in many generalized linear models including logistic, Poisson regression and others.
引用
收藏
页码:367 / 379
页数:13
相关论文
共 50 条
  • [1] Posterior contraction in group sparse logit models for categorical responses
    Jeong, Seonghyun
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2022, 219 : 266 - 278
  • [2] Dual extrapolation for sparse generalized linear models
    Massias, Mathurin
    Vaiter, Samuel
    Gramfort, Alexandre
    Salmon, Joseph
    [J]. Journal of Machine Learning Research, 2020, 21
  • [3] Bayesian inference for sparse generalized linear models
    Seeger, Matthias
    Gerwinn, Sebastian
    Bethge, Matthias
    [J]. MACHINE LEARNING: ECML 2007, PROCEEDINGS, 2007, 4701 : 298 - +
  • [4] Dual Extrapolation for Sparse Generalized Linear Models
    Massias, Mathurin
    Vaiter, Samuel
    Gramfort, Alexandre
    Salmon, Joseph
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21 : 1 - 33
  • [5] A Fast Posterior Update for Sparse Underdetermined Linear Models
    Potter, Lee C.
    Schniter, Philip
    Ziniel, Justin
    [J]. 2008 42ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-4, 2008, : 838 - 842
  • [6] Posterior contraction rate of sparse latent feature models with application to proteomics
    Li, Tong
    Zhou, Tianjian
    Tsui, Kam-Wah
    Wei, Lin
    Ji, Yuan
    [J]. STATISTICAL THEORY AND RELATED FIELDS, 2022, 6 (01) : 29 - 39
  • [7] POSTERIOR CONTRACTION IN SPARSE BAYESIAN FACTOR MODELS FOR MASSIVE COVARIANCE MATRICES
    Pati, Debdeep
    Bhattacharya, Anirban
    Pillai, Natesh S.
    Dunson, David
    [J]. ANNALS OF STATISTICS, 2014, 42 (03): : 1102 - 1130
  • [8] Fast Sparse Classification for Generalized Linear and Additive Models
    Liu, Jiachang
    Zhong, Chudi
    Seltzer, Margo
    Rudin, Cynthia
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [9] Goodness of fit of generalized linear models to sparse data
    Paul, SR
    Deng, DL
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2000, 62 : 323 - 333
  • [10] Sparse principal component regression for generalized linear models
    Kawano, Shuichi
    Fujisawa, Hironori
    Takada, Toyoyuki
    Shiroishi, Toshihiko
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 124 : 180 - 196