Neuroprotection in ischemia: Blocking calcium-permeable acid-sensing ion channels

被引:846
|
作者
Xiong, ZG [1 ]
Zhu, XM
Chu, XP
Minami, M
Hey, J
Wei, WL
MacDonald, JF
Wemmie, JA
Price, MP
Welsh, MJ
Simon, RP
机构
[1] Robert S Dow Neurobiol Labs Legacy Res, Portland, OR 97232 USA
[2] Univ Toronto, Dept Physiol, Toronto, ON M5S 1A8, Canada
[3] Univ Iowa, Dept Psychiat, Iowa City, IA 52242 USA
[4] Univ Iowa, Dept Vet Affairs Med Ctr, Iowa City, IA 52242 USA
[5] Univ Iowa, Dept Internal Med, Iowa City, IA 52242 USA
[6] Univ Iowa, Howard Hughes Med Inst, Iowa City, IA 52242 USA
[7] Oregon Hlth & Sci Univ, Dept Neurol Physiol & Pharmacol, Portland, OR 97239 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1016/j.cell.2004.08.026
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ca2+ toxicity remains the central focus of ischemic brain injury. The mechanism by which toxic Ca2+ loading of cells occurs in the ischemic brain has become less clear as multiple human trials of glutamate antagonists have failed to show effective neuroprotection in stroke. Acidosis is a common feature of ischemia and is assumed to play a critical role in brain injury; however, the mechanism(s) remain ill defined. Here, we show that acidosis activates Ca2+-permeable acid-sensing ion channels (ASICs), inducing glutamate receptor-independent, Ca2+-dependent, neuronal injury inhibited by ASIC blockers. Cells lacking endogenous ASICs are resistant to acid injury, while transfection of Ca2+-permeable ASIC1a establishes sensitivity. In focal ischemia, intracerebroventricular injection of ASIC1 a blockers or knockout of the ASIC1 a gene protects the brain from ischemic injury and does so more potently than glutamate antagonism. Thus, acidosis injures the brain via membrane receptor-based mechanisms with resultant toxicity of [Ca2+](i), disclosing new potential therapeutic targets for stroke.
引用
收藏
页码:687 / 698
页数:12
相关论文
共 50 条
  • [31] The functions of acid-sensing ion channels and their modulations
    Wu, LJ
    Xu, TL
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2003, 30 (03) : 339 - 343
  • [32] Acid-sensing ion channels in sensory perception
    Lingueglia, Eric
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (24) : 17325 - 17329
  • [33] Gating mechanisms of acid-sensing ion channels
    Yoder, Nate
    Yoshioka, Craig
    Gouaux, Eric
    NATURE, 2018, 555 (7696) : 397 - +
  • [34] Identification of acid-sensing ion channels in bone
    Jahr, H
    van Driel, M
    van Osch, GJVM
    Weinans, H
    van Leeuwen, JPTM
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2005, 337 (01) : 349 - 354
  • [35] Acid-Sensing Ion Channels in Postoperative Pain
    Deval, Emmanuel
    Noel, Jacques
    Gasull, Xavier
    Delaunay, Anne
    Alloui, Abdelkrim
    Friend, Valerie
    Eschalier, Alain
    Lazdunski, Michel
    Lingueglia, Eric
    JOURNAL OF NEUROSCIENCE, 2011, 31 (16): : 6059 - 6066
  • [36] Acid-Sensing Ion Channels Contribute to Neurotoxicity
    Xiang-Ping Chu
    Kenneth A. Grasing
    John Q. Wang
    Translational Stroke Research, 2014, 5 : 69 - 78
  • [37] Acid-sensing ion channels in sensory signaling
    Caraftino, Marcelo D.
    Montalbetti, Nicolas
    AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2020, 318 (03) : F531 - F543
  • [38] Peptides inhibitors of acid-sensing ion channels
    Diochot, S.
    Salinas, M.
    Baron, A.
    Escoubas, P.
    Lazdunski, M.
    TOXICON, 2007, 49 (02) : 271 - 284
  • [39] Gating mechanisms of acid-sensing ion channels
    Nate Yoder
    Craig Yoshioka
    Eric Gouaux
    Nature, 2018, 555 : 397 - 401
  • [40] Acid-sensing ion channels in pain and disease
    John A. Wemmie
    Rebecca J. Taugher
    Collin J. Kreple
    Nature Reviews Neuroscience, 2013, 14 : 461 - 471