Neuroprotection in ischemia: Blocking calcium-permeable acid-sensing ion channels

被引:846
|
作者
Xiong, ZG [1 ]
Zhu, XM
Chu, XP
Minami, M
Hey, J
Wei, WL
MacDonald, JF
Wemmie, JA
Price, MP
Welsh, MJ
Simon, RP
机构
[1] Robert S Dow Neurobiol Labs Legacy Res, Portland, OR 97232 USA
[2] Univ Toronto, Dept Physiol, Toronto, ON M5S 1A8, Canada
[3] Univ Iowa, Dept Psychiat, Iowa City, IA 52242 USA
[4] Univ Iowa, Dept Vet Affairs Med Ctr, Iowa City, IA 52242 USA
[5] Univ Iowa, Dept Internal Med, Iowa City, IA 52242 USA
[6] Univ Iowa, Howard Hughes Med Inst, Iowa City, IA 52242 USA
[7] Oregon Hlth & Sci Univ, Dept Neurol Physiol & Pharmacol, Portland, OR 97239 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1016/j.cell.2004.08.026
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ca2+ toxicity remains the central focus of ischemic brain injury. The mechanism by which toxic Ca2+ loading of cells occurs in the ischemic brain has become less clear as multiple human trials of glutamate antagonists have failed to show effective neuroprotection in stroke. Acidosis is a common feature of ischemia and is assumed to play a critical role in brain injury; however, the mechanism(s) remain ill defined. Here, we show that acidosis activates Ca2+-permeable acid-sensing ion channels (ASICs), inducing glutamate receptor-independent, Ca2+-dependent, neuronal injury inhibited by ASIC blockers. Cells lacking endogenous ASICs are resistant to acid injury, while transfection of Ca2+-permeable ASIC1a establishes sensitivity. In focal ischemia, intracerebroventricular injection of ASIC1 a blockers or knockout of the ASIC1 a gene protects the brain from ischemic injury and does so more potently than glutamate antagonism. Thus, acidosis injures the brain via membrane receptor-based mechanisms with resultant toxicity of [Ca2+](i), disclosing new potential therapeutic targets for stroke.
引用
收藏
页码:687 / 698
页数:12
相关论文
共 50 条
  • [21] Identification of a Calcium Permeable Human Acid-sensing Ion Channel 1 Transcript Variant
    Hoagland, Erin N.
    Sherwood, Thomas W.
    Lee, Kirsten G.
    Walker, Christopher J.
    Askwith, Candice C.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (53) : 41852 - 41862
  • [22] CALCIUM-PERMEABLE ION CHANNELS IN CEREBELLAR NEURONS FROM MDX MICE
    HAWS, CM
    LANSMAN, JB
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1991, 244 (1311) : 185 - 189
  • [23] Acid-Sensing Ion Channels in Pathological Conditions
    Chu, Xiang-Ping
    Xiong, Zhi-Gang
    SODIUM CALCIUM EXCHANGE: A GROWING SPECTRUM OF PATHOPHYSIOLOGICAL IMPLICATIONS, 2013, 961 : 419 - 431
  • [24] Acid-sensing ion channels in allergic rhinitis
    KleinJan, A.
    CLINICAL AND EXPERIMENTAL ALLERGY, 2012, 42 (07): : 988 - 990
  • [25] Acid-sensing ion channels in gastrointestinal function
    Holzer, Peter
    NEUROPHARMACOLOGY, 2015, 94 : 72 - 79
  • [26] Acid-sensing ion channels under hypoxia
    Guo Yingjun
    Qu Xun
    CHANNELS, 2013, 7 (04) : 231 - 237
  • [27] Acid-sensing ion channels in malignant gliomas
    Berdiev, BK
    Xia, JZ
    McLean, LA
    Markert, JM
    Gillespie, GY
    Mapstone, TB
    Naren, AP
    Jovov, B
    Bubien, JK
    Ji, HL
    Fuller, CM
    Kirk, KL
    Benos, DJ
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (17) : 15023 - 15034
  • [28] Peptide Modulation of Acid-Sensing Ion Channels
    Borg, Christian B.
    Haugaard-Kedstrom, Linda M.
    Lynagh, Timothy
    Stromgaard, Kristian
    Pless, Stephan A.
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 130A - 130A
  • [29] Role of acid-sensing ion channels in glaucoma
    Saugstad, J
    Dong, J
    Chu, XP
    Xiong, ZG
    Simon, RP
    Engelman, CJ
    Cioffi, GA
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2004, 45 : U773 - U773
  • [30] Acid-sensing ion channels in taste buds
    Shimada, Shoichi
    Ueda, Takashi
    Ishida, Yusuke
    Yamamoto, Takashi
    Ugawa, Shinya
    ARCHIVES OF HISTOLOGY AND CYTOLOGY, 2006, 69 (04) : 227 - 231