Interval estimation by simulation as an alternative to and extension of confidence intervals

被引:146
|
作者
Greenland, S [1 ]
机构
[1] Univ Calif Los Angeles, Dept Epidemiol, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
关键词
attributable fraction; attributable risk; Bayesian methods; bias; bootstrapping; confidence intervals; confounding; meta-analysis; Monte Carlo methods; relative risk; risk analysis; simulation;
D O I
10.1093/ije/dyh276
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
There are numerous techniques for constructing confidence intervals, most of which are unavailable in standard software. Modern computing power allows one to replace these techniques with relatively simple, general simulation methods. These methods extend easily to incorporate sources of uncertainty beyond random error. The simulation concepts are explained in an example of estimating a population attributable fraction, a problem for which analytical formulas can be quite unwieldy. First, simulation of conventional intervals is illustrated and compared to bootstrapping. The simulation is then extended to include sampling of bias parameters from prior distributions. It is argued that the use of almost any neutral or survey-based prior that allows non-zero values for bias parameters will produce an interval estimate less misleading than a conventional confidence interval. Along with simplicity and generality, the ease with which simulation can incorporate these priors is a key advantage over conventional methods.
引用
收藏
页码:1389 / 1397
页数:9
相关论文
共 50 条
  • [31] A confidence interval estimation for the number of signals
    Chen, PY
    Wicks, MC
    RADAR 2002, 2002, (490): : 344 - 348
  • [32] On confidence interval estimation of normal percentiles
    Zili Zhang
    Saralees Nadarajah
    Japanese Journal of Statistics and Data Science, 2018, 1 (2) : 373 - 391
  • [33] CONFIDENCE-INTERVAL ESTIMATION OF INTERACTION
    HOSMER, DW
    LEMESHOW, S
    EPIDEMIOLOGY, 1992, 3 (05) : 452 - 456
  • [34] Estimation of confidence intervals of quantiles for the Weibull distribution
    J.-H. Heo
    J. D. Salas
    K.-D. Kim
    Stochastic Environmental Research and Risk Assessment, 2001, 15 : 284 - 309
  • [35] Confidence interval estimation of a normal percentile
    Chakraborti, S.
    Li, J.
    AMERICAN STATISTICIAN, 2007, 61 (04): : 331 - 336
  • [36] Exponential confidence intervals in nonparametric density estimation
    Bagdasarov, DR
    Ostrovskii, EI
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1998, 42 (04) : 684 - 688
  • [37] Confidence interval estimation of a normal percentile
    Nadarajah, Saralees
    AMERICAN STATISTICIAN, 2008, 62 (02): : 186 - 187
  • [38] On confidence interval estimation of normal percentiles
    Zhang, Zili
    Nadarajah, Saralees
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2018, 1 (02) : 373 - 391
  • [39] CONFIDENCE INTERVAL BASED MOTION ESTIMATION
    Hu, Nan
    Yang, En-hui
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 1588 - 1592
  • [40] Confidence Interval Estimation in Ultrastructural Model
    Liau, Pen-Hwang
    Shalabh
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (05) : 675 - 681