Interval estimation by simulation as an alternative to and extension of confidence intervals

被引:146
|
作者
Greenland, S [1 ]
机构
[1] Univ Calif Los Angeles, Dept Epidemiol, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
关键词
attributable fraction; attributable risk; Bayesian methods; bias; bootstrapping; confidence intervals; confounding; meta-analysis; Monte Carlo methods; relative risk; risk analysis; simulation;
D O I
10.1093/ije/dyh276
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
There are numerous techniques for constructing confidence intervals, most of which are unavailable in standard software. Modern computing power allows one to replace these techniques with relatively simple, general simulation methods. These methods extend easily to incorporate sources of uncertainty beyond random error. The simulation concepts are explained in an example of estimating a population attributable fraction, a problem for which analytical formulas can be quite unwieldy. First, simulation of conventional intervals is illustrated and compared to bootstrapping. The simulation is then extended to include sampling of bias parameters from prior distributions. It is argued that the use of almost any neutral or survey-based prior that allows non-zero values for bias parameters will produce an interval estimate less misleading than a conventional confidence interval. Along with simplicity and generality, the ease with which simulation can incorporate these priors is a key advantage over conventional methods.
引用
收藏
页码:1389 / 1397
页数:9
相关论文
共 50 条
  • [11] Confidence intervals for kernel density estimation
    Fiorio, Carlo V.
    STATA JOURNAL, 2004, 4 (02): : 168 - 179
  • [12] Profile likelihood for estimation and confidence intervals
    Royston, Patrick
    STATA JOURNAL, 2007, 7 (03): : 376 - 387
  • [13] Confidence intervals for logspline density estimation
    Kooperberg, C
    Stone, CJ
    NONLINEAR ESTIMATION AND CLASSIFICATION, 2003, 171 : 285 - 295
  • [14] TOWARDS ESTIMATION AND CONFIDENCE-INTERVALS
    KEEFE, M
    BRITISH MEDICAL JOURNAL, 1986, 292 (6528): : 1138 - 1138
  • [15] ALTERNATIVE CONFIDENCE-INTERVALS FOR THE RELATIVE DIFFERENCE
    GART, JJ
    NAM, JM
    STATISTICIAN, 1988, 37 (4-5): : 427 - 431
  • [16] A Gaussian alternative to using improper confidence intervals
    Plante, Andre
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2020, 48 (04): : 773 - 801
  • [17] VI: Confidence intervals - An alternative for p values
    Krummenauer, F
    KLINISCHE MONATSBLATTER FUR AUGENHEILKUNDE, 2003, 220 (1-2) : 60 - 62
  • [18] Teaching Confidence Intervals Using Simulation
    Hagtvedt, Reidar
    Jones, Gregory
    Jones, Kari
    TEACHING STATISTICS, 2008, 30 (02) : 53 - 56
  • [19] Interval-Valued Intuitionistic Fuzzy Confidence Intervals
    Kahraman, Cengiz
    Oztaysi, Basar
    Onar, Sezi Cevik
    JOURNAL OF INTELLIGENT SYSTEMS, 2019, 28 (02) : 307 - 319
  • [20] CONFIDENCE-INTERVALS AND INTERVAL CANCERS - NEEDLES AND HAYSTACKS
    KEE, F
    GORMAN, D
    ODLINGSMEE, W
    PUBLIC HEALTH, 1992, 106 (01) : 29 - 35