LOCAL-GLOBAL BACKGROUND MODELING FOR ANOMALY DETECTION IN HYPERSPECTRAL IMAGES

被引:0
|
作者
Madar, Eyal [1 ]
Kuybeda, Oleg [1 ]
Malah, David [1 ]
Barzohar, Meir [1 ]
机构
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
关键词
Background Modeling; Unsupervised Anomaly Detection; Hyperspectral Images;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we address the problem of unsupervised detection of anomalies in hyperspectral images. Our proposed method is based on a novel statistical background modeling approach that combines local and global approaches. The local-global background model has the ability to adapt to all nuances of the background process like local approaches but avoids over-fitting due to a too high number of degrees of freedom, which produces a high false alarm rate. This is done by constraining the local background models to be interrelated. The results strongly prove the effectiveness of the proposed algorithm. We experimentally show that our local-global algorithm performs better than several other global or local anomaly detection techniques, such as the well known RX or its Gaussian Mixture version (GMRX).
引用
收藏
页码:368 / 371
页数:4
相关论文
共 50 条
  • [21] Hybrid anomaly detection method for hyperspectral images
    Fatma Küçük
    [J]. Signal, Image and Video Processing, 2023, 17 : 2755 - 2761
  • [22] A Tutorial Overview of Anomaly Detection in Hyperspectral Images
    Matteoli, Stefania
    Diani, Marco
    Corsini, Giovanni
    [J]. IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2010, 25 (07) : 5 - 27
  • [23] ISOLATION FOREST FOR ANOMALY DETECTION IN HYPERSPECTRAL IMAGES
    Zhang, Kunzhong
    Kang, Xudong
    Li, Shutao
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 437 - 440
  • [24] An Approach for Subpixel Anomaly Detection in Hyperspectral Images
    Khazai, Safa
    Safari, Abdolreza
    Mojaradi, Barat
    Homayouni, Saeid
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (02) : 769 - 778
  • [25] Hybrid anomaly detection method for hyperspectral images
    Kucuk, Fatma
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (06) : 2755 - 2761
  • [26] A new approach to anomaly detection in hyperspectral images
    Clare, P
    Bernhardt, M
    Oxford, W
    Murphy, S
    Godfree, P
    Wilkinson, V
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL AND ULTRASPECTRAL IMAGERY IX, 2003, 5093 : 17 - 28
  • [27] Hyperspectral Anomaly Detection via Background and Potential Anomaly Dictionaries Construction
    Ning Huyan
    Zhang, Xiangrong
    Zhou, Huiyu
    Jiao, Licheng
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (04): : 2263 - 2276
  • [28] Automatic detection of sunspots on solar continuum HMI images blending local-global threshold
    Veeramani, Madhan
    Sudhakar, M. S.
    [J]. NEW ASTRONOMY, 2024, 105
  • [29] Based on the Clustering of the Background for Hyperspectral Imaging Anomaly Detection
    Li Xiaohui
    Zhao Chunhui
    [J]. 2011 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND CONTROL (ICECC), 2011, : 1345 - 1348
  • [30] Integration of an autoencoder and background suppression for hyperspectral anomaly detection
    Hu, Xing
    Chen, Tingting
    Zhang, Dawei
    [J]. REMOTE SENSING LETTERS, 2024, 15 (09) : 977 - 987