Large time asymptotics for the fourth-order nonlinear Schrodinger equation

被引:16
|
作者
Hayashi, Nakao [1 ]
Naumkin, Pavel I. [2 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Osaka, Tokyonaka 5600043, Japan
[2] Ctr Ciencias Matemat, Morelia 58089, Michoacan, Mexico
关键词
Fourth-order nonlinear Schrodinger equation; Large time asymptotics; GLOBAL WELL-POSEDNESS; VORTEX FILAMENT; DIMENSIONS; DISPERSION;
D O I
10.1016/j.jde.2014.10.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Cauchy problem for the fourth-order nonlinear Schrodinger equation in the super critical case i partial derivative(t)u + 1/4 partial derivative(4)(x)u = lambda partial derivative(x)(vertical bar u vertical bar(rho-1)u), where rho > 4, lambda is an element of C. We prove the global existence and the large time asymptotics of solutions for small initial data u(0) is an element of H-1 boolean AND H-1/2,H-1, when the order of the nonliuearity rho >4. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:880 / 905
页数:26
相关论文
共 50 条
  • [31] The Cauchy problem for the fourth-order nonlinear Schrodinger equation related to the vortex filament
    Huo, ZH
    Jia, YL
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 214 (01) : 1 - 35
  • [32] Optical solitons and stability analysis for the generalized fourth-order nonlinear Schrodinger equation
    Tang, Xiao-Song
    Li, Biao
    [J]. MODERN PHYSICS LETTERS B, 2019, 33 (27):
  • [33] Multi-pulse solitary waves in a fourth-order nonlinear Schrodinger equation
    Parker, Ross
    Aceves, Alejandro
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2021, 422
  • [34] On a fourth-order nonlinear Helmholtz equation
    Bonheure, Denis
    Casteras, Jean-Baptiste
    Mandel, Rainer
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2019, 99 (03): : 831 - 852
  • [35] Bifurcations and traveling wave solutions for a fourth-order integrable nonlinear Schrodinger equation
    Liu, Minghuan
    Zheng, Yuanguang
    [J]. OPTIK, 2022, 255
  • [36] Soliton Solutions and Conservation Laws for an Inhomogeneous Fourth-Order Nonlinear Schrodinger Equation
    Wang, Pan
    Qi, Feng-Hua
    Yang, Jian-Rong
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2018, 58 (11) : 1856 - 1864
  • [37] Blow-up of rough solutions to the fourth-order nonlinear Schrodinger equation
    Zhu, Shihui
    Yang, Han
    Zhang, Jian
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6186 - 6201
  • [38] Higher-order localized wave solutions to a coupled fourth-order nonlinear Schrodinger equation
    Song, N.
    Shang, H. J.
    Zhang, Y. F.
    Ma, W. X.
    [J]. MODERN PHYSICS LETTERS B, 2022, 36 (26N27):
  • [39] The Cauchy problem for the fourth-order Schrodinger equation in Hs
    Liu, Xuan
    Zhang, Ting
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (07)
  • [40] The global solution of anisotropic fourth-order Schrodinger equation
    Su, Hailing
    Guo, Cuihua
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2019,