Estimation and prediction for a class of dynamic nonlinear statistical models
被引:141
|
作者:
Ord, JK
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Management Sci & Informat Syst, University Pk, PA 16802 USAPenn State Univ, Dept Management Sci & Informat Syst, University Pk, PA 16802 USA
Ord, JK
[1
]
Koehler, AB
论文数: 0引用数: 0
h-index: 0
机构:Penn State Univ, Dept Management Sci & Informat Syst, University Pk, PA 16802 USA
Koehler, AB
Snyder, RD
论文数: 0引用数: 0
h-index: 0
机构:Penn State Univ, Dept Management Sci & Informat Syst, University Pk, PA 16802 USA
Snyder, RD
机构:
[1] Penn State Univ, Dept Management Sci & Informat Syst, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
forecasting;
Holt-Winters method;
maximum likelihood estimation;
state-space models;
D O I:
10.2307/2965433
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
A class of nonlinear state-space models, characterized by a single source of randomness, is introduced. A special case, the model underpinning the multiplicative Holt-Winters method of forecasting, is identified. Maximum likelihood estimation based on exponential smoothing instead of a Kalman filter, and with the potential to be applied in contexts involving non-Gaussian disturbances, is considered. A method for computing prediction intervals is proposed and evaluated on both simulated and real data.
机构:
Penn State Univ, Dept Math, University Pk, PA 16802 USA
Penn State Univ, Dept Meteorol, University Pk, PA 16802 USAPenn State Univ, Dept Math, University Pk, PA 16802 USA
Harlim, John
Mahdi, Adam
论文数: 0引用数: 0
h-index: 0
机构:
N Carolina State Univ, Dept Math, Raleigh, NC 27695 USAPenn State Univ, Dept Math, University Pk, PA 16802 USA
Mahdi, Adam
Majda, Andrew J.
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Courant Inst Math Sci, Dept Math, New York, NY 10012 USA
NYU, Courant Inst Math Sci, Ctr Atmosphere & Ocean Sci, New York, NY 10012 USAPenn State Univ, Dept Math, University Pk, PA 16802 USA