The Fault-Tolerant Hamiltonian Problems of Crossed Cubes with Path Faults

被引:2
|
作者
Chen, Hon-Chan [1 ]
Kung, Tzu-Liang [2 ]
Zou, Yun-Hao [3 ]
Mao, Hsin-Wei [2 ]
机构
[1] Natl Chin Yi Univ Technol, Dept Informat Management, Taichung, Taiwan
[2] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
[3] Natl Taiwan Univ Sci & Technol, Dept Informat Management, Taichung, Taiwan
来源
关键词
cross cube; fault tolerance; Hamiltonian cycle; Hamiltonian path; interconnection network; TOPOLOGICAL PROPERTIES; HYPERCUBE;
D O I
10.1587/transinf.2015PAP0019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we investigate the fault-tolerant Hamiltonian problems of crossed cubes with a faulty path. More precisely, let P denote any path in an n-dimensional crossed cube CQ(n) for n >= 5, and let V(P) be the vertex set of P. We show that CQ(n) - V(P) is Hamiltonian if vertical bar V(P)vertical bar <= n and is Hamiltonian connected if vertical bar V(P)vertical bar <= n-1. Compared with the previous results showing that the crossed cube is (n - 2)-fault-tolerant Hamiltonian and (n - 3)-fault-tolerant Hamiltonian connected for arbitrary faults, the contribution of this paper indicates that the crossed cube can tolerate more faulty vertices if these vertices happen to form some specific types of structures.
引用
收藏
页码:2116 / 2122
页数:7
相关论文
共 50 条
  • [31] Fault-Tolerant Embedding of Pairwise Independent Hamiltonian Paths on a Faulty Hypercube with Edge Faults
    Hsieh, Sun-Yuan
    Weng, Yu-Fen
    THEORY OF COMPUTING SYSTEMS, 2009, 45 (02) : 407 - 425
  • [32] Fault-Tolerant Embedding of Pairwise Independent Hamiltonian Paths on a Faulty Hypercube with Edge Faults
    Sun-Yuan Hsieh
    Yu-Fen Weng
    Theory of Computing Systems, 2009, 45 : 407 - 425
  • [33] Fault-Tolerant Hamiltonian Connectivity and Fault-Tolerant Hamiltonicity of the Fully Connected Cubic Networks
    Ho, Tung-Yang
    Lin, Cheng-Kuan
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2009, 25 (06) : 1855 - 1862
  • [34] Fault-tolerant hamiltonicity and fault-tolerant hamiltonian connectivity of the folded Petersen cube networks
    Lin, Cheng-Kuan
    Ho, Tung-Yang
    Tan, Jimmy J. M.
    Hsu, Lih-Hsing
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (01) : 57 - 66
  • [35] Stochastic Fault-tolerant Routing in Locally Twisted Cubes
    Takano, Yudai
    Kaneko, Keiichi
    2017 6TH ICT INTERNATIONAL STUDENT PROJECT CONFERENCE (ICT-ISPC), 2017,
  • [36] Stochastic Fault-Tolerant Routing in Dual-Cubes
    Park, Junsuk
    Seki, Nobuhiro
    Kaneko, Keiichi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2017, E100D (08): : 1920 - 1921
  • [37] Optimal fault-tolerant embedding of paths in twisted cubes
    Fan, Jianxi
    Lin, Xiaola
    Pan, Yi
    Jia, Xiaohua
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2007, 67 (02) : 205 - 214
  • [38] MODULAR FAULT-TOLERANT BOOLEAN N-CUBES
    YANG, CS
    WU, SY
    IEEE MICRO, 1994, 14 (04) : 68 - 77
  • [39] Fault-tolerant embedding of meshes/tori in twisted cubes
    Dong, Qiang
    Yang, Xiaofan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (08) : 1595 - 1602
  • [40] Fault-tolerant Hamiltonian laceability of balanced hypercubes
    Zhou, Qingguo
    Chen, Dan
    Lu, Huazhong
    INFORMATION SCIENCES, 2015, 300 : 20 - 27