The Fault-Tolerant Hamiltonian Problems of Crossed Cubes with Path Faults

被引:2
|
作者
Chen, Hon-Chan [1 ]
Kung, Tzu-Liang [2 ]
Zou, Yun-Hao [3 ]
Mao, Hsin-Wei [2 ]
机构
[1] Natl Chin Yi Univ Technol, Dept Informat Management, Taichung, Taiwan
[2] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
[3] Natl Taiwan Univ Sci & Technol, Dept Informat Management, Taichung, Taiwan
来源
关键词
cross cube; fault tolerance; Hamiltonian cycle; Hamiltonian path; interconnection network; TOPOLOGICAL PROPERTIES; HYPERCUBE;
D O I
10.1587/transinf.2015PAP0019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we investigate the fault-tolerant Hamiltonian problems of crossed cubes with a faulty path. More precisely, let P denote any path in an n-dimensional crossed cube CQ(n) for n >= 5, and let V(P) be the vertex set of P. We show that CQ(n) - V(P) is Hamiltonian if vertical bar V(P)vertical bar <= n and is Hamiltonian connected if vertical bar V(P)vertical bar <= n-1. Compared with the previous results showing that the crossed cube is (n - 2)-fault-tolerant Hamiltonian and (n - 3)-fault-tolerant Hamiltonian connected for arbitrary faults, the contribution of this paper indicates that the crossed cube can tolerate more faulty vertices if these vertices happen to form some specific types of structures.
引用
收藏
页码:2116 / 2122
页数:7
相关论文
共 50 条
  • [21] Fault-tolerant Synchronous FSM Network Design for Path Delay Faults
    Ostanin, S.
    Andreeva, V.
    Butorina, N.
    Tretyakov, D.
    PROCEEDINGS OF 2018 IEEE EAST-WEST DESIGN & TEST SYMPOSIUM (EWDTS 2018), 2018,
  • [22] FAULT-TOLERANT HAMILTONIAN LACEABILITY AND FAULT-TOLERANT CONDITIONAL HAMILTONIAN FOR BIPARTITE HYPERCUBE-LIKE NETWORKS
    Lin, Cheng-Kuan
    Ho, Tung-Yang
    Tan, Jimmy J. M.
    Hsu, Lih-Hsing
    JOURNAL OF INTERCONNECTION NETWORKS, 2009, 10 (03) : 243 - 251
  • [23] Fault-tolerant routing for complete Josephus cubes
    Loh, PKK
    Hsu, WJ
    PARALLEL COMPUTING, 2004, 30 (9-10) : 1151 - 1167
  • [24] Fault-tolerant routing on Complete Josephus!Cubes
    Loh, PKK
    Schröder, H
    Hsu, WJ
    PROCEEDINGS OF THE 6TH AUSTRALASIAN COMPUTER SYSTEMS ARCHITECTURE CONFERENCE, ACSAC 2001, 2001, 23 (04): : 95 - 104
  • [25] Conditional fault-tolerant hamiltonicity of twisted cubes
    Fu, Jung-Sheng
    SEVENTH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES, PROCEEDINGS, 2006, : 5 - 10
  • [26] Fault-Tolerant Panconnectivity of Augmented Cubes AQn
    Xu, Xirong
    Zhang, Huifeng
    Zhang, Sijia
    Yang, Yuansheng
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2019, 30 (08) : 1247 - 1278
  • [27] Fault-tolerant hamiltonian laceability of hypercubes
    Tsai, CH
    Tan, JJM
    Liang, TN
    Hsu, LH
    INFORMATION PROCESSING LETTERS, 2002, 83 (06) : 301 - 306
  • [28] Fault-tolerant Cycle Embedding into 3-Ary n-Cubes with Structure Faults
    Fan, Weibei
    Wang, Yang
    Sun, Jing
    Han, Zhijie
    Li, Peng
    Wang, Ruchuan
    2019 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2019), 2019, : 451 - 457
  • [29] Optimal Fault-Tolerant Hamiltonian and Hamiltonian Connected Graphs
    Chen, Y-Chuang
    Huang, Yong-Zen
    Hsu, Lih-Hsing
    Tan, Jimmy J. M.
    INTERNATIONAL ELECTRONIC CONFERENCE ON COMPUTER SCIENCE, 2008, 1060 : 345 - +
  • [30] Fault-tolerant path embedding in folded hypercubes with both node and edge faults
    Kuo, Che-Nan
    Chou, Hsin-Hung
    Chang, Nai-Wen
    Hsieh, Sun-Yuan
    THEORETICAL COMPUTER SCIENCE, 2013, 475 : 82 - 91