The Fault-Tolerant Hamiltonian Problems of Crossed Cubes with Path Faults

被引:2
|
作者
Chen, Hon-Chan [1 ]
Kung, Tzu-Liang [2 ]
Zou, Yun-Hao [3 ]
Mao, Hsin-Wei [2 ]
机构
[1] Natl Chin Yi Univ Technol, Dept Informat Management, Taichung, Taiwan
[2] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
[3] Natl Taiwan Univ Sci & Technol, Dept Informat Management, Taichung, Taiwan
来源
关键词
cross cube; fault tolerance; Hamiltonian cycle; Hamiltonian path; interconnection network; TOPOLOGICAL PROPERTIES; HYPERCUBE;
D O I
10.1587/transinf.2015PAP0019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we investigate the fault-tolerant Hamiltonian problems of crossed cubes with a faulty path. More precisely, let P denote any path in an n-dimensional crossed cube CQ(n) for n >= 5, and let V(P) be the vertex set of P. We show that CQ(n) - V(P) is Hamiltonian if vertical bar V(P)vertical bar <= n and is Hamiltonian connected if vertical bar V(P)vertical bar <= n-1. Compared with the previous results showing that the crossed cube is (n - 2)-fault-tolerant Hamiltonian and (n - 3)-fault-tolerant Hamiltonian connected for arbitrary faults, the contribution of this paper indicates that the crossed cube can tolerate more faulty vertices if these vertices happen to form some specific types of structures.
引用
收藏
页码:2116 / 2122
页数:7
相关论文
共 50 条
  • [1] On the fault-tolerant pancyclicity of crossed cubes
    Huang, WT
    Chen, WK
    Chen, CH
    NINTH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, PROCEEDINGS, 2002, : 483 - 488
  • [2] Fault-tolerant Routing Methods in Crossed Cubes
    Otake, Koji
    Mouri, Kousuke
    Kaneko, Keiichi
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON ADVANCES IN INFORMATION TECHNOLOGY (IAIT2018), 2018,
  • [3] On the fault-tolerant Hamiltonicity of faulty crossed cubes
    Huang, WT
    Chuang, YC
    Tan, JJM
    Hsu, LH
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2002, E85A (06) : 1359 - 1370
  • [4] Fault-tolerant embedding of paths in crossed cubes
    Ma, Meijie
    Liu, Guizhen
    Xu, Jun-Ming
    THEORETICAL COMPUTER SCIENCE, 2008, 407 (1-3) : 110 - 116
  • [5] Fault-tolerant cycle-embedding of crossed cubes
    Yang, MC
    Li, TK
    Tan, JJM
    Hsu, LH
    INFORMATION PROCESSING LETTERS, 2003, 88 (04) : 149 - 154
  • [6] Three edge-disjoint Hamiltonian cycles in crossed cubes with applications to fault-tolerant data broadcasting
    Pai, Kung-Jui
    Wu, Ro-Yu
    Peng, Sheng-Lung
    Chang, Jou-Ming
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (04): : 4126 - 4145
  • [7] Three edge-disjoint Hamiltonian cycles in crossed cubes with applications to fault-tolerant data broadcasting
    Kung-Jui Pai
    Ro-Yu Wu
    Sheng-Lung Peng
    Jou-Ming Chang
    The Journal of Supercomputing, 2023, 79 : 4126 - 4145
  • [8] Fault-free Hamiltonian cycles in crossed cubes with conditional link faults
    Hung, Hao-Shun
    Fu, Jung-Sheng
    Chen, Gen-Huey
    INFORMATION SCIENCES, 2007, 177 (24) : 5664 - 5674
  • [9] Fault-tolerant hamiltonian cycles and paths embedding into locally exchanged twisted cubes
    Weibei Fan
    Jianxi Fan
    Zhijie Han
    Peng Li
    Yujie Zhang
    Ruchuan Wang
    Frontiers of Computer Science, 2021, 15
  • [10] Fault-tolerant hamiltonian cycles and paths embedding into locally exchanged twisted cubes
    Fan, Weibei
    Fan, Jianxi
    Han, Zhijie
    Li, Peng
    Zhang, Yujie
    Wang, Ruchuan
    FRONTIERS OF COMPUTER SCIENCE, 2021, 15 (03)