Non-linear CCA and PCA by alignment of local models

被引:0
|
作者
Verbeek, JJ [1 ]
Roweis, ST [1 ]
Vlassis, N [1 ]
机构
[1] Univ Amsterdam, Inst Informat, NL-1012 WX Amsterdam, Netherlands
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a non-linear Canonical Correlation Analysis (CCA) method which works by coordinating or aligning mixtures of linear models. In the same way that CCA extends the idea of PCA, our work extends recent methods for non-linear dimensionality reduction to the case where multiple embeddings of the same underlying low dimensional coordinates are observed, each lying on a different high dimensional manifold. We also show that a special case of our method, when applied to only a single manifold, reduces to the Laplacian Eigenmaps algorithm. As with previous alignment schemes, once the mixture models have been estimated, all of the parameters of our model can be estimated in closed form without local optima in the learning. Experimental results illustrate the viability of the approach as a non-linear extension of CCA.
引用
收藏
页码:297 / 304
页数:8
相关论文
共 50 条
  • [1] Local non-linear alignment for non-linear dimensionality reduction
    Niu, Guo
    Ma, Zhengming
    [J]. IET COMPUTER VISION, 2017, 11 (05) : 331 - 341
  • [2] Non-Linear Feature Extraction by Linear PCA Using Local Kernel
    Hotta, Kazuhiro
    [J]. 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 2064 - 2067
  • [3] Non-local non-linear sigma models
    Gubser, Steven S.
    Jepsen, Christian B.
    Ji, Ziming
    Trundy, Brian
    Yarom, Amos
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (09)
  • [4] Non-local non-linear sigma models
    Steven S. Gubser
    Christian B. Jepsen
    Ziming Ji
    Brian Trundy
    Amos Yarom
    [J]. Journal of High Energy Physics, 2019
  • [5] Randomized non-linear PCA networks
    Qaraei, Mohammadreza
    Abbaasi, Saeid
    Ghiasi-Shirazi, Kamaledin
    [J]. INFORMATION SCIENCES, 2021, 545 : 241 - 253
  • [6] Non-linear PCA: a missing data approach
    Scholz, M
    Kaplan, F
    Guy, CL
    Kopka, J
    Selbig, J
    [J]. BIOINFORMATICS, 2005, 21 (20) : 3887 - 3895
  • [7] Processing Approach of Non-linear Adjustment Models in the Space of Non-linear Models
    LI Chaokui ZHU Qing SONG ChengfangLI Chaokui
    [J]. Geo-spatial Information Science, 2003, (02) : 25 - 30
  • [8] High Dimensional Non-linear Modeling with Bayesian Mixture of CCA
    Hosino, Tikara
    [J]. NEURAL INFORMATION PROCESSING: THEORY AND ALGORITHMS, PT I, 2010, 6443 : 446 - 453
  • [9] Local CCA alignment and its applications
    Wei, Lai
    Xu, Feifei
    [J]. NEUROCOMPUTING, 2012, 89 : 78 - 88
  • [10] Structure-Preserving Non-Linear PCA for Matrices
    Virta, Joni
    Artemiou, Andreas
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 3658 - 3668