Non-linear CCA and PCA by alignment of local models

被引:0
|
作者
Verbeek, JJ [1 ]
Roweis, ST [1 ]
Vlassis, N [1 ]
机构
[1] Univ Amsterdam, Inst Informat, NL-1012 WX Amsterdam, Netherlands
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a non-linear Canonical Correlation Analysis (CCA) method which works by coordinating or aligning mixtures of linear models. In the same way that CCA extends the idea of PCA, our work extends recent methods for non-linear dimensionality reduction to the case where multiple embeddings of the same underlying low dimensional coordinates are observed, each lying on a different high dimensional manifold. We also show that a special case of our method, when applied to only a single manifold, reduces to the Laplacian Eigenmaps algorithm. As with previous alignment schemes, once the mixture models have been estimated, all of the parameters of our model can be estimated in closed form without local optima in the learning. Experimental results illustrate the viability of the approach as a non-linear extension of CCA.
引用
收藏
页码:297 / 304
页数:8
相关论文
共 50 条
  • [11] Non-linear model predictive control for models with local information and uncertainties
    Azman, Kristian
    Kocijan, Jus
    [J]. TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2008, 30 (05) : 371 - 396
  • [12] Describing the growth curve of local turkey using non-linear models
    Juarez-Caratachea, Aureliano
    Delgado-Hurtado, Ivan
    Gutierrez-Vazquez, Ernestina
    Salas-Razo, Guillermo
    Ortiz-Rodriguez, Ruy
    Segura Correa, Jose C.
    [J]. REVISTA MVZ CORDOBA, 2019, 24 (01) : 7104 - 7107
  • [13] Local context in non-linear deformation models for handwritten character recognition
    Keysers, D
    Gollan, C
    Ney, H
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 4, 2004, : 511 - 514
  • [15] OPTIMAL NON-LINEAR MODELS
    Aldroubi, Akram
    Cabrelli, Carlos
    Molter, Ursula
    [J]. REVISTA DE LA UNION MATEMATICA ARGENTINA, 2009, 50 (02): : 217 - 225
  • [16] PARAMETRIZATIONS OF NON-LINEAR MODELS
    HOUGAARD, P
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1982, 44 (02): : 244 - 252
  • [17] NON-LOCAL CHARGES FOR NON-LINEAR SIGMA-MODELS ON GRASSMANN MANIFOLDS
    ABDALLA, E
    FORGER, M
    SANTOS, AL
    [J]. NUCLEAR PHYSICS B, 1985, 256 (01) : 145 - 180
  • [18] The non-linear probability distribution function in models with local primordial non-Gaussianity
    Lam, Tsz Yan
    Sheth, Ravi K.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 395 (03) : 1743 - 1748
  • [19] Non-linear non-local Cosmology
    Nunes, N. J.
    Mulryne, D. J.
    [J]. DARK SIDE OF THE UNIVERSE, 2009, 1115 : 329 - 334
  • [20] Linear and non-linear models of brain interactions
    Büchel, C
    [J]. BIOLOGICAL PSYCHIATRY, 2000, 47 (08) : 64S - 64S