On the maximum total sample size of a group sequential test about binomial proportions

被引:9
|
作者
Kepner, JL
Chang, MN
机构
[1] Roswell Pk Canc Inst, Dept Clin Biostat, Buffalo, NY 14063 USA
[2] Univ Florida, Dept Stat, Childrens Oncol Grp, Res Data Ctr, Gainesville, FL 32611 USA
关键词
uniformly most powerful test; minimax design; type; 1-3; design; power function;
D O I
10.1016/S0167-7152(02)00436-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is well known that the standard single-stage binomial test is uniformly most powerful to detect an increase or decrease in a binomial proportion. The general perception is that, to achieve a fixed significance level and power, a group sequential test will require a larger maximum total sample size than required by the corresponding standard single-stage test because missing observations are possible under the group sequential test setting. In this article, it is proved that, under mild conditions, there exist group sequential tests which achieve the predesignated significance level and power with maximum total sample size bounded above by the sample size for the corresponding standard single-stage test. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:87 / 92
页数:6
相关论文
共 50 条
  • [1] On the maximum total sample size of a group sequential test about bivariate binomial proportions
    Yu, Jihnhee
    Kepner, James L.
    [J]. STATISTICS & PROBABILITY LETTERS, 2011, 81 (07) : 829 - 835
  • [2] Nearly optimal truncated group sequential test on binomial proportions
    Hu, Sigui
    Wang, Honglei
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (08) : 2332 - 2342
  • [3] Bayesian Sample Size Determination for Binomial Proportions
    M'Lan, Cyr E.
    Joseph, Lawrence
    Wolfson, David B.
    [J]. BAYESIAN ANALYSIS, 2008, 3 (02): : 269 - 296
  • [4] CONDITIONAL SEQUENTIAL TEST FOR EQUALITY OF 2 BINOMIAL PROPORTIONS
    MEEKER, WQ
    [J]. BIOMETRICS, 1978, 34 (04) : 741 - 741
  • [5] On Group Sequential Designs Comparing Two Binomial Proportions
    Kepner, James L.
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2010, 20 (01) : 145 - 159
  • [6] Test size calculation by comparing three binomial proportions
    Juan Castro-Alva, Jose
    Almendra-Arao, Felix
    Josefina Reyes-Cervantes, Hortensia
    Solano Tajonar-Sanabria, Francisco
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (13) : 4578 - 4589
  • [7] Bayesian Sample Size Calculations for Comparing Two Binomial Proportions
    Zhao Zhanping
    Chen Rong jiang
    Tang Niansheng
    [J]. RECENT ADVANCE IN STATISTICS APPLICATION AND RELATED AREAS, PTS 1 AND 2, 2008, : 481 - +
  • [8] A group sequential t-test with updating of sample size
    Denne, JS
    Jennison, C
    [J]. BIOMETRIKA, 2000, 87 (01) : 125 - 134
  • [9] Bayesian consensus-based sample size criteria for binomial proportions
    Joseph, Lawrence
    Belisle, Patrick
    [J]. STATISTICS IN MEDICINE, 2019, 38 (23) : 4566 - 4573
  • [10] Group sequential designs for clinical trials when the maximum sample size is uncertain
    Yarahmadi, Amin
    Dodd, Lori E.
    Jaki, Thomas
    Horby, Peter
    Stallard, Nigel
    [J]. STATISTICS IN MEDICINE, 2024,