On the maximum total sample size of a group sequential test about bivariate binomial proportions

被引:0
|
作者
Yu, Jihnhee [1 ]
Kepner, James L. [1 ]
机构
[1] SUNY Buffalo, Dept Biostat, Buffalo, NY 14260 USA
关键词
Bivariate binomial distribution; Cancer clinical trials; Cytostatic treatment; Decision rule; Toxicity evaluation; II CLINICAL-TRIALS; PHASE-II; DESIGNS; CARCINOMA;
D O I
10.1016/j.spl.2011.02.016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For testing "univariate" binomial proportions, it has been proven that, under mild conditions, there exist group sequential designs which satisfy the pre-specified Type I error and power of the single-stage design while the sample size is bounded above by that of the single-stage design (Kepner and Chang, 2003). In this article, we extend this result and prove the existence of such group sequential designs for various decision rules in the space of bivariate binomial variables. We also demonstrate how to obtain the actual group sequential designs for detecting changes in bivariate binomial variables. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:829 / 835
页数:7
相关论文
共 50 条
  • [1] On the maximum total sample size of a group sequential test about binomial proportions
    Kepner, JL
    Chang, MN
    [J]. STATISTICS & PROBABILITY LETTERS, 2003, 62 (01) : 87 - 92
  • [2] Nearly optimal truncated group sequential test on binomial proportions
    Hu, Sigui
    Wang, Honglei
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (08) : 2332 - 2342
  • [3] Bayesian Sample Size Determination for Binomial Proportions
    M'Lan, Cyr E.
    Joseph, Lawrence
    Wolfson, David B.
    [J]. BAYESIAN ANALYSIS, 2008, 3 (02): : 269 - 296
  • [4] CONDITIONAL SEQUENTIAL TEST FOR EQUALITY OF 2 BINOMIAL PROPORTIONS
    MEEKER, WQ
    [J]. BIOMETRICS, 1978, 34 (04) : 741 - 741
  • [5] On Group Sequential Designs Comparing Two Binomial Proportions
    Kepner, James L.
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2010, 20 (01) : 145 - 159
  • [6] Test size calculation by comparing three binomial proportions
    Juan Castro-Alva, Jose
    Almendra-Arao, Felix
    Josefina Reyes-Cervantes, Hortensia
    Solano Tajonar-Sanabria, Francisco
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (13) : 4578 - 4589
  • [7] Bayesian Sample Size Calculations for Comparing Two Binomial Proportions
    Zhao Zhanping
    Chen Rong jiang
    Tang Niansheng
    [J]. RECENT ADVANCE IN STATISTICS APPLICATION AND RELATED AREAS, PTS 1 AND 2, 2008, : 481 - +
  • [8] A group sequential t-test with updating of sample size
    Denne, JS
    Jennison, C
    [J]. BIOMETRIKA, 2000, 87 (01) : 125 - 134
  • [9] Bayesian consensus-based sample size criteria for binomial proportions
    Joseph, Lawrence
    Belisle, Patrick
    [J]. STATISTICS IN MEDICINE, 2019, 38 (23) : 4566 - 4573
  • [10] Group sequential designs for clinical trials when the maximum sample size is uncertain
    Yarahmadi, Amin
    Dodd, Lori E.
    Jaki, Thomas
    Horby, Peter
    Stallard, Nigel
    [J]. STATISTICS IN MEDICINE, 2024,