PROBABILITY FUSION FOR HYPERSPECTRAL AND LIDAR DATA

被引:0
|
作者
Ge, Chiru [1 ]
Du, Qian [2 ]
机构
[1] Shandong Normal Univ, Informat Sci & Engn, Jinan 250358, Peoples R China
[2] Mississippi State Univ, Elect & Comp Engn, Starkville, MS 39762 USA
基金
国家重点研发计划;
关键词
Hyperspectral image; LiDAR; residual fusion; classification; probability fusion; CLASSIFICATION;
D O I
10.1109/IGARSS39084.2020.9323750
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a new probability fusion strategy is proposed for hyperspectral and LiDAR data classification, which is inspired by the representation residual fusion strategy in our previous work. Unlike the residual fusion strategy utilizes a collaborative representation classifier, the probability fusion strategy deploys a deep residual network (DRN). This paper compares the two fusion strategies. The experiment results show that the probability fusion strategy with DRN is better than the residual fusion strategy in classification performance.
引用
收藏
页码:2675 / 2678
页数:4
相关论文
共 50 条
  • [1] Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest
    Debes, Christian
    Merentitis, Andreas
    Heremans, Roel
    Hahn, Juergen
    Frangiadakis, Nikolaos
    van Kasteren, Tim
    Liao, Wenzhi
    Bellens, Rik
    Pizurica, Aleksandra
    Gautama, Sidharta
    Philips, Wilfried
    Prasad, Saurabh
    Du, Qian
    Pacifici, Fabio
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2405 - 2418
  • [2] A comprehensive review of hyperspectral data fusion with lidar and sar data
    Kahraman, Sevcan
    Bacher, Raphael
    [J]. ANNUAL REVIEWS IN CONTROL, 2021, 51 : 236 - 253
  • [3] DEEP FUSION OF HYPERSPECTRAL AND LIDAR DATA FOR THEMATIC CLASSIFICATION
    Chen, Yushi
    Li, Chunyang
    Ghamisi, Pedram
    Shi, Chunyu
    Gu, Yanfeng
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3591 - 3594
  • [4] Fusion of Hyperspectral and LiDAR Data With a Novel Ensemble Classifier
    Xia, Junshi
    Yokoya, Naoto
    Iwasaki, Akira
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (06) : 957 - 961
  • [5] FUSION OF HYPERSPECTRAL AND LIDAR DATA FOR FOREST ATTRIBUTES ESTIMATION
    Dalponte, Michele
    Frizzera, Lorenzo
    Gianelle, Damiano
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 788 - 791
  • [6] Hyperspectral and LiDAR Data Fusion Using Collaborative Representation
    Du, Qian
    Ball, John E.
    Ge, Chiru
    [J]. ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGERY XXVI, 2020, 11392
  • [7] SEMATIC SEGMENTATION OF HYPERSPECTRAL IMAGES WITH THE FUSION OF LIDAR DATA
    Aytaylan, Hakan
    Yuksel, Seniha Esen
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2522 - 2525
  • [8] FUSION OF HYPERSPECTRAL AND LIDAR DATA IN CLASSIFICATION OF URBAN AREAS
    Ghamisi, Pedram
    Benediktsson, Jon Atli
    Phinn, Stuart
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [9] Hyperspectral and LiDAR data fusion in features based classification
    Farsat Heeto Abdulrahman
    [J]. Arabian Journal of Geosciences, 2021, 14 (24)
  • [10] COMBINING FEATURE FUSION AND DECISION FUSION FOR CLASSIFICATION OF HYPERSPECTRAL AND LIDAR DATA
    Liao, Wenzhi
    Bellens, Rik
    Pizurica, Aleksandra
    Gautama, Sidharta
    Philips, Wilfried
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1241 - 1244