FUSION OF HYPERSPECTRAL AND LIDAR DATA IN CLASSIFICATION OF URBAN AREAS

被引:13
|
作者
Ghamisi, Pedram [1 ]
Benediktsson, Jon Atli [1 ]
Phinn, Stuart
机构
[1] Univ Iceland, Fac Elect & Comp Engn, IS-101 Reykjavik, Iceland
关键词
LiDAR; hyperspectral; data fusion; random forest; supervised feature extraction; ATTRIBUTE PROFILES;
D O I
10.1109/IGARSS.2014.6946386
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
in this paper, the fusion of hyperspectral and LiDAR data is taken into account in order to develop a new classification framework for the accurate analysis of urban areas. In this method, an attribute profile is considered in order to model the spatial information of LiDAR and hyperspectral data. In parallel, in order to reduce the redundancy of the hyperspectral data and address the so-called curse of dimensionality, a supervised feature extraction technique is used. Then, the new features obtained by the attribute profile and the supervised feature extraction technique are concatenated into a stacked vector. The final classification map is achieved by using a Random Forest classifier. Results infer that the proposed method can provide very good results in terms of classification accuracy and CPU processing time in an automatic manner.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] OBJECT-BASED FUSION OF HYPERSPECTRAL AND LIDAR DATA FOR CLASSIFICATION OF URBAN AREAS
    Marpu, Prashanth Reddy
    Martinez, Sergio Sanchez
    [J]. 2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2015,
  • [2] Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas
    Dalponte, Michele
    Bruzzone, Lorenzo
    Gianelle, Damiano
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (05): : 1416 - 1427
  • [3] Decision level fusion in classification of hyperspectral data from urban areas
    Benediktsson, JA
    Palmason, JA
    Sveinsson, JR
    Chanussot, J
    [J]. IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 73 - 76
  • [4] URBAN AREA OBJECT-BASED CLASSIFICATION BY FUSION OF HYPERSPECTRAL AND LIDAR DATA
    Kiani, Kamel
    Mojaradi, Barat
    Esmaeily, Ali
    Salehi, Bahram
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [5] Fusion of Multispectral LiDAR, Hyperspectral, and RGB Data for Urban Land Cover Classification
    Haensch, Ronny
    Hellwich, Olaf
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (02) : 366 - 370
  • [6] Urban classification by multi-feature fusion of hyperspectral image and LiDAR data
    Cao Q.
    Ma A.
    Zhong Y.
    Zhao J.
    Zhao B.
    Zhang L.
    [J]. Yaogan Xuebao/Journal of Remote Sensing, 2019, 23 (05): : 892 - 903
  • [7] FUSION OF LIDAR, HYPERSPECTRAL AND RGB DATA FOR URBAN LAND USE AND LAND COVER CLASSIFICATION
    Sukhanov, Sergey
    Budylskii, Dmitrii
    Tankoyeu, Ivan
    Heremans, Roel
    Debes, Christian
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3864 - 3867
  • [8] DEEP FUSION OF HYPERSPECTRAL AND LIDAR DATA FOR THEMATIC CLASSIFICATION
    Chen, Yushi
    Li, Chunyang
    Ghamisi, Pedram
    Shi, Chunyu
    Gu, Yanfeng
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3591 - 3594
  • [9] Hyperspectral and LiDAR data fusion in features based classification
    Farsat Heeto Abdulrahman
    [J]. Arabian Journal of Geosciences, 2021, 14 (24)
  • [10] COMBINING FEATURE FUSION AND DECISION FUSION FOR CLASSIFICATION OF HYPERSPECTRAL AND LIDAR DATA
    Liao, Wenzhi
    Bellens, Rik
    Pizurica, Aleksandra
    Gautama, Sidharta
    Philips, Wilfried
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1241 - 1244