Fusion of Multispectral LiDAR, Hyperspectral, and RGB Data for Urban Land Cover Classification

被引:36
|
作者
Haensch, Ronny [1 ]
Hellwich, Olaf [2 ]
机构
[1] German Aerosp Ctr DLR, D-82234 Wessling, Germany
[2] Tech Univ Berlin, Comp Vis & Remote Sensing, D-10587 Berlin, Germany
关键词
Classification; data fusion; HIS; multispectral light detection and ranging (LiDAR); random forest (RF);
D O I
10.1109/LGRS.2020.2972955
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
With the increasing importance of monitoring urban areas, the question arises which sensors are best suited to solve the corresponding challenges. This letter proposes novel node tests within the random forest (RF) framework, which allows them to apply them to optical RGB images, hyperspectral images, and light detection and ranging (LiDAR) data, either individually or in combination. This does not only allow to derive accurate classification results for many relevant urban classes without preprocessing or feature extraction but also provides insights into which sensor offers the most meaningful data to solve the given classification task. The achieved results on a public benchmark data set are superior to results obtained by deep learning approaches despite being based on only a fraction of training samples.
引用
收藏
页码:366 / 370
页数:5
相关论文
共 50 条
  • [1] FUSION OF LIDAR, HYPERSPECTRAL AND RGB DATA FOR URBAN LAND USE AND LAND COVER CLASSIFICATION
    Sukhanov, Sergey
    Budylskii, Dmitrii
    Tankoyeu, Ivan
    Heremans, Roel
    Debes, Christian
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3864 - 3867
  • [2] Multispectral LiDAR Data for Land Cover Classification of Urban Areas
    Morsy, Salem
    Shaker, Ahmed
    El-Rabbany, Ahmed
    SENSORS, 2017, 17 (05):
  • [3] Fusion of waveform LiDAR data and hyperspectral imagery for land cover classification
    Wang, Hongzhou
    Glennie, Craig
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 108 : 1 - 11
  • [4] Fusion of Airborne Discrete-Return LiDAR and Hyperspectral Data for Land Cover Classification
    Luo, Shezhou
    Wang, Cheng
    Xi, Xiaohuan
    Zeng, Hongcheng
    Li, Dong
    Xia, Shaobo
    Wang, Pinghua
    REMOTE SENSING, 2016, 8 (01)
  • [5] Fusion of Hyperspectral and LiDAR Data Using Discriminant Correlation Analysis for Land Cover Classification
    Jahan, Farah
    Zhou, Jun
    Awrangjeb, Mohammad
    Gao, Yongsheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (10) : 3905 - 3917
  • [6] FUSION OF HYPERSPECTRAL AND LIDAR DATA IN CLASSIFICATION OF URBAN AREAS
    Ghamisi, Pedram
    Benediktsson, Jon Atli
    Phinn, Stuart
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [7] URBAN LAND COVER CLASSIFICATION USING HYPERSPECTRAL DATA
    Hegde, Gaurav
    Ahamed, J. Mohammed
    Hebbar, R.
    Raj, Uday
    ISPRS TECHNICAL COMMISSION VIII SYMPOSIUM, 2014, 40-8 : 751 - 754
  • [8] Rural Land Cover Classification using Multispectral Image and LIDAR Data
    Jang, Jae-Dong
    KOREAN JOURNAL OF REMOTE SENSING, 2006, 22 (02) : 101 - 110
  • [9] Fusion of High Resolution Aerial Multispectral and LiDAR Data: Land Cover in the Context of Urban Mosquito Habitat
    Hartfield, Kyle A.
    Landau, Katheryn I.
    van Leeuwen, Willem J. D.
    REMOTE SENSING, 2011, 3 (11) : 2364 - 2383
  • [10] Land-cover classification using both hyperspectral and LiDAR data
    Ghamisi, Pedram
    Benediktsson, Jon Atli
    Phinn, Stuart
    INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2015, 6 (03) : 189 - 215