Fusion of Multispectral LiDAR, Hyperspectral, and RGB Data for Urban Land Cover Classification

被引:36
|
作者
Haensch, Ronny [1 ]
Hellwich, Olaf [2 ]
机构
[1] German Aerosp Ctr DLR, D-82234 Wessling, Germany
[2] Tech Univ Berlin, Comp Vis & Remote Sensing, D-10587 Berlin, Germany
关键词
Classification; data fusion; HIS; multispectral light detection and ranging (LiDAR); random forest (RF);
D O I
10.1109/LGRS.2020.2972955
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
With the increasing importance of monitoring urban areas, the question arises which sensors are best suited to solve the corresponding challenges. This letter proposes novel node tests within the random forest (RF) framework, which allows them to apply them to optical RGB images, hyperspectral images, and light detection and ranging (LiDAR) data, either individually or in combination. This does not only allow to derive accurate classification results for many relevant urban classes without preprocessing or feature extraction but also provides insights into which sensor offers the most meaningful data to solve the given classification task. The achieved results on a public benchmark data set are superior to results obtained by deep learning approaches despite being based on only a fraction of training samples.
引用
收藏
页码:366 / 370
页数:5
相关论文
共 50 条
  • [41] AIRBORNE MULTISPECTRAL LIDAR DATA FOR LAND-COVER CLASSIFICATION AND LAND/WATER MAPPING USING DIFFERENT SPECTRAL INDEXES
    Morsy, S.
    Shaker, A.
    El-Rabbany, A.
    LaRocque, P. E.
    XXIII ISPRS CONGRESS, COMMISSION III, 2016, 3 (03): : 217 - 224
  • [42] Land-cover classification of multispectral LiDAR data using CNN with optimized hyper-parameters
    Pan, Suoyan
    Guan, Haiyan
    Chen, Yating
    Yu, Yongtao
    Goncalves, Wesley Nunes
    Marcato Junior, Jose
    Li, Jonathan
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 166 : 241 - 254
  • [43] Urban land-cover classification based on airborne hyperspectral data and field observation
    Yamazaki, Fumio
    Hara, Konomi
    Liu, Wen
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XX, 2014, 9244
  • [44] Land Cover Classification Method Integrating Spaceborne LiDAR Combined with Multispectral Images
    Huang, Xing
    Hu, Xuyan
    Liu, Weiwei
    Zhao, Hong
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2024, 51 (08):
  • [45] Parallel supervised land-cover classification system for hyperspectral and multispectral images
    Garcia-Salgado, Beatriz P.
    Ponomaryov, Volodymyr I.
    Sadovnychiy, Sergiy
    Robles-Gonzalez, Marco
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2018, 15 (03) : 687 - 704
  • [46] EVALUATING THE POTENTIAL OF MULTISPECTRAL AIRBORNE LIDAR FOR TOPOGRAPHIC MAPPING AND LAND COVER CLASSIFICATION
    Wichmann, V.
    Bremer, M.
    Lindenberger, J.
    Rutzinger, M.
    Georges, C.
    Petrini-Monteferri, F.
    ISPRS GEOSPATIAL WEEK 2015, 2015, II-3 (W5): : 113 - 119
  • [47] Land Cover Classification Method Integrating Spaceborne LiDAR Combined with Multispectral Images
    Huang X.
    Hu X.
    Liu W.
    Zhao H.
    Zhongguo Jiguang/Chinese Journal of Lasers, 2024, 51 (08):
  • [48] Parallel supervised land-cover classification system for hyperspectral and multispectral images
    Beatriz P. Garcia-Salgado
    Volodymyr I. Ponomaryov
    Sergiy Sadovnychiy
    Marco Robles-Gonzalez
    Journal of Real-Time Image Processing, 2018, 15 : 687 - 704
  • [49] COMBINING FEATURE FUSION AND DECISION FUSION FOR CLASSIFICATION OF HYPERSPECTRAL AND LIDAR DATA
    Liao, Wenzhi
    Bellens, Rik
    Pizurica, Aleksandra
    Gautama, Sidharta
    Philips, Wilfried
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1241 - 1244
  • [50] Synergistic Use of LiDAR and APEX Hyperspectral Data for High-Resolution Urban Land Cover Mapping
    Priem, Frederik
    Canters, Frank
    REMOTE SENSING, 2016, 8 (10)