PROBABILITY FUSION FOR HYPERSPECTRAL AND LIDAR DATA

被引:0
|
作者
Ge, Chiru [1 ]
Du, Qian [2 ]
机构
[1] Shandong Normal Univ, Informat Sci & Engn, Jinan 250358, Peoples R China
[2] Mississippi State Univ, Elect & Comp Engn, Starkville, MS 39762 USA
基金
国家重点研发计划;
关键词
Hyperspectral image; LiDAR; residual fusion; classification; probability fusion; CLASSIFICATION;
D O I
10.1109/IGARSS39084.2020.9323750
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a new probability fusion strategy is proposed for hyperspectral and LiDAR data classification, which is inspired by the representation residual fusion strategy in our previous work. Unlike the residual fusion strategy utilizes a collaborative representation classifier, the probability fusion strategy deploys a deep residual network (DRN). This paper compares the two fusion strategies. The experiment results show that the probability fusion strategy with DRN is better than the residual fusion strategy in classification performance.
引用
下载
收藏
页码:2675 / 2678
页数:4
相关论文
共 50 条
  • [31] A Triplet Semisupervised Deep Network for Fusion Classification of Hyperspectral and LiDAR Data
    Li, Jiaojiao
    Ma, Yinle
    Song, Rui
    Xi, Bobo
    Hong, Danfeng
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [32] SEMI-SUPERVISED GRAPH FUSION OF HYPERSPECTRAL AND LIDAR DATA FOR CLASSIFICATION
    Liao, Wenzhi
    Xia, Junshi
    Du, Peijun
    Philips, Wilfried
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 53 - 56
  • [33] Urban tree species mapping using hyperspectral and lidar data fusion
    Alonzo, Michael
    Bookhagen, Bodo
    Roberts, Dar A.
    Remote Sensing of Environment, 2014, 148 : 70 - 83
  • [34] FUSION OF HYPERSPECTRAL AND LIDAR DATA BASED ON DIMENSION REDUCTION AND MAXIMUM LIKELIHOOD
    Abbasi, B.
    Arefi, H.
    Bigdeli, B.
    Motagh, M.
    Roessner, S.
    36TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT, 2015, 47 (W3): : 569 - 573
  • [35] AUTOMATIC FUSION AND CLASSIFICATION OF HYPERSPECTRAL AND LIDAR DATA USING RANDOM FORESTS
    Merentitis, Andreas
    Debes, Christian
    Heremans, Roel
    Frangiadakis, Nikolaos
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1245 - 1248
  • [36] FUSION OF MULTISPECTRAL LIDAR AND HYPERSPECTRAL IMAGERY
    Rasti, Behnood
    Ghamisi, Pedram
    Gloaguen, Richard
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2659 - 2662
  • [37] Fusion of high resolution LIDAR elevation data with hyperspectral data to characterize tree canopies
    Miller, CJ
    ALGORITHMS FOR MULTISPECTRAL, HYPERSPECTRAL AND ULTRASPECTRAL IMAGERY VII, 2001, 4381 : 246 - 252
  • [38] Multi-attentive hierarchical dense fusion net for fusion classification of hyperspectral and LiDAR data
    Wang, Xianghai
    Feng, Yining
    Song, Ruoxi
    Mu, Zhenhua
    Song, Chuanming
    INFORMATION FUSION, 2022, 82 : 1 - 18
  • [39] Information Fusion for Classification of Hyperspectral and LiDAR Data Using IP-CNN
    Zhang, Mengmeng
    Li, Wei
    Tao, Ran
    Li, Hengchao
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [40] FEATURE FUSION OF HYPERSPECTRAL AND LIDAR DATA USING EXTINCTION PROFILES AND TOTAL VARIATION
    Ghamisi, Pedram
    Rasti, Behnood
    Zhu, Xiao X.
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2621 - 2624