A reinforcement ensemble deep transfer learning network for rolling bearing fault diagnosis with Multi-source domains

被引:90
|
作者
Li, Xingqiu [1 ,2 ]
Jiang, Hongkai [1 ]
Xie, Min [2 ,3 ]
Wang, Tongqing [4 ]
Wang, Ruixin [1 ]
Wu, Zhenghong [1 ]
机构
[1] Northwestern Polytech Univ, Sch Civil Aviat, Xian, Peoples R China
[2] City Univ Hong Kong, Dept Adv Design & Syst Engn, Hong Kong, Peoples R China
[3] City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China
[4] AECC Sichuan Gas Turbine Estab, Mianyang, Peoples R China
基金
中国国家自然科学基金;
关键词
Rolling bearing; Fault diagnosis; Multi-source domains; Reinforcement ensemble deep transfer network; Unified metric;
D O I
10.1016/j.aei.2021.101480
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fault diagnosis with transfer learning has achieved great attention. However, existing methods mostly focused on single-source-single-target sceneries. In some cases, there may exist multiple source domains. Therefore, a reinforcement ensemble deep transfer learning network (REDTLN) is proposed for fault diagnosis with multisource domains. Firstly, various new kernel maximum mean discrepancies (kMMDs) are used to construct multiple deep transfer learning networks (DTLNs) for single-source-single-target domain adaptation. The differences of kernel functions and source domains can help the DTLNs learn diverse transferable features. Secondly, a new unified metric is designed based on kMMD and diversity measures for unsupervised ensemble learning. Finally, using the unified metric as the reward, a reinforcement learning method is firstly explored to generate an effective combination rule for multi-domain-multi-model reinforcement ensemble. The proposed method is verified with experiment datasets, and the results empirically show its effectiveness and superiority compared with other methods.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] TRANSFER LEARNING ROLLING BEARING FAULT DIAGNOSIS METHOD BASED ON DEEP DOMAIN ADAPTIVE NETWORK
    Liao, Yu
    Geng, Jiahao
    Guo, Li
    Geng, Bing
    Cui, Kun
    Li, Runze
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2025, 21 (01): : 209 - 225
  • [22] Research on a Rolling Bearing Fault Diagnosis Method Based on Multi-Source Deep Sub-Domain Adaptation
    Xie, Fengyun
    Wang, Linglan
    Zhu, Haiyan
    Xie, Sanmao
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [23] Research on rolling bearing fault diagnosis method based on improved multi-source fusion convolutional neural network
    Shi, Huaitao
    Sun, Huayang
    Bai, Xiaotian
    Song, Zelong
    Gao, Tianhao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [24] Reliable Fault Diagnosis of Rolling Bearing Based on Ensemble Modified Deep Metric Learning
    Xu, Zengbing
    Li, Xiaojuan
    Wang, Jinxia
    Wang, Zhigang
    SHOCK AND VIBRATION, 2021, 2021
  • [25] A Reinforcement Ensemble Learning Method for Rolling Bearing Fault Diagnosis under Variable Work Conditions
    Li, Yanning
    Zhang, Yi
    Wang, Ruixin
    Fu, Jiangfeng
    SENSORS, 2024, 24 (11)
  • [26] Deep Reconstruction Transfer Convolutional Neural Network for Rolling Bearing Fault Diagnosis
    Feng, Ziwei
    Tong, Qingbin
    Jiang, Xuedong
    Lu, Feiyu
    Du, Xin
    Xu, Jianjun
    Huo, Jingyi
    SENSORS, 2024, 24 (07)
  • [27] A reinforcement transfer learning method based on a policy gradient for rolling bearing fault diagnosis
    Wang, Ruixin
    Jiang, Hongkai
    Wu, Zhenghong
    Xu, Jun
    Zhang, Jianjun
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (06)
  • [28] A Multi-Source Weighted Deep Transfer Network for Open-Set Fault Diagnosis of Rotary Machinery
    Chen, Zhuyun
    Liao, Yixiao
    Li, Jipu
    Huang, Ruyi
    Xu, Lei
    Jin, Gang
    Li, Weihua
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (03) : 1982 - 1993
  • [29] TSMDA: intelligent fault diagnosis of rolling bearing with two stage multi-source domain adaptation
    Zhang, Qianqian
    Lv, Zhongwei
    Hao, Caiyun
    Yan, Haitao
    Jia, Yingzhi
    Chen, Yang
    Fan, Qiuxia
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (11)
  • [30] Multi-source rolling bearing fault diagnosis under variable working conditions based on GCN
    Xie F.
    Wang L.
    Song M.
    Fan Q.
    Sun E.
    Zhu H.
    Journal of Railway Science and Engineering, 2024, 21 (05) : 2109 - 2118