Co-extracted electrons and beam inhomogeneity in the large negative ion source SPIDER

被引:13
|
作者
Pimazzoni, Antonio [1 ,2 ]
Agostini, Matteo [2 ]
Brombin, Matteo [2 ]
Marconato, Nicolo [2 ,3 ]
Sartori, Emanuele [2 ]
Pasqualotto, Roberto [2 ]
Serianni, Gianluigi [2 ]
机构
[1] Viale Univ 2, INFNLNL, I-35020 Legnaro, Italy
[2] Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy
[3] Univ Padua, Dipartimento Ingn Ind DII, I-35131 Padua, Italy
关键词
Electrons; Negative ions; SPIDER; Magnetic field; Beam inhomogeneity;
D O I
10.1016/j.fusengdes.2021.112440
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The SPIDER ion source has been designed to generate a current of H- ions up to 60 A and accelerate them up to 100 keV. In addition, the ratio between the co-extracted electrons and negative ions has to be below 1, and a beam inhomogeneity within 10 % has to be attained. A magnetic filter field is produced by a current flowing through the plasma electrode in the vertical direction with the aim of reducing electron temperature and density in the extraction region, so as to enhance the survival probability of H- ions while reducing the co-extracted electrons. Another strategy to reduce the co-extracted electrons is to apply a small bias voltage to the plasma grid with respect to the ion source body. In addition to this, a so-called bias plate is installed in the vicinity of the plasma grid, which can also be biased with respect to source body. However, the application of a bias voltage affects the beam inhomogeneity by modifying the ExB plasma drift within the ion source. Recently, the filter field configuration of SPIDER was modified so as to improve the plasma diffusion towards the extraction region. In addition, the voltage ratings of the bias power supplies were increased. Both these modifications permit to efficiently lower the electron co-extracted current. The present contribution describes such improvements while focusing on the effects they have on the beam inhomogeneity.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Characteristics of extracted ion beam from a cesium-free negative ion source using sheet plasma
    Kaminaga, H.
    Takimoto, T.
    Tonegawa, A.
    Sato, K. N.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (11):
  • [22] Measurement of stripping losses in the negative ion source SPIDER
    Agnello, R.
    Barbisan, M.
    Pasqualotto, R.
    Pimazzoni, A.
    Poggi, C.
    Sartori, E.
    Serianni, G.
    FUSION ENGINEERING AND DESIGN, 2023, 186
  • [23] Spectroscopic diagnostics for the negative ion RF source SPIDER
    Pasqualotto, R.
    Gazza, E.
    Serianni, G.
    Zaniol, B.
    Agostini, M.
    Alfier, A.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 623 (02): : 794 - 796
  • [24] First operations with caesium of the negative ion source SPIDER
    Sartori, E.
    Agostini, M.
    Barbisan, M.
    Bigi, M.
    Boldrin, M.
    Brombin, M.
    Casagrande, R.
    Dal Bello, S.
    Dan, M.
    Duteil, B. P.
    Fadone, M.
    Grando, L.
    Maistrello, A.
    Pavei, M.
    Pimazzoni, A.
    Poggi, C.
    Rizzolo, A.
    Shepherd, A.
    Ugoletti, M.
    Veltri, P.
    Zaniol, B.
    Agnello, R.
    Agostinetti, P.
    Antoni, V.
    Aprile, D.
    Candeloro, V.
    Cavallini, C.
    Cavazzana, R.
    Cavenago, M.
    Chitarin, G.
    Cristofaro, S.
    Dalla Palma, M.
    Delogu, R.
    De Muri, M.
    Denizeau, S.
    Fellin, F.
    Ferro, A.
    Gasparrini, C.
    Jain, P.
    Luchetta, A.
    Manduchi, G.
    Marconato, N.
    Marcuzzi, D.
    Mario, I.
    Milazzo, R.
    Pasqualotto, R.
    Patton, T.
    Pilan, N.
    Recchia, M.
    Rigoni-Garola, A.
    NUCLEAR FUSION, 2022, 62 (08)
  • [25] Characteristics of the extracted negative-ion beam in a cesium-free negative-ion source using TPDsheet-U
    Tonegawa, A.
    Kaminaga, H.
    Hanai, K.
    Takimoto, T.
    Sato, K. N.
    Kawamura, K.
    NUCLEAR FUSION, 2021, 61 (10)
  • [26] Negative ion density in the ion source SPIDER in Cs free conditions
    Barbisan, M.
    Agnello, R.
    Casati, G.
    Pasqualotto, R.
    Poggi, C.
    Sartori, E.
    Spolaore, M.
    Serianni, G.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2022, 64 (06)
  • [27] Experimental study on spatial uniformity of H- ion beam in a large negative ion source
    Hanada, M
    Seki, T
    Takado, N
    Inoue, T
    Morishita, T
    Mizuno, T
    Hatayama, A
    Imai, T
    Kashiwagi, M
    Sakamoto, K
    Taniguchi, M
    Watanabe, K
    FUSION ENGINEERING AND DESIGN, 2005, 74 (1-4) : 311 - 317
  • [28] Negative ion beam extraction experiments on the KAERI negative ion source
    Jeong, Seung Ho
    Kim, Tae-Seong
    Park, Min
    Chang, Doo-Hee
    Jung, Bongki
    In, Sang-Ryul
    Lee, Kwang Won
    FUSION ENGINEERING AND DESIGN, 2016, 109 : 186 - 191
  • [29] Extracted Beam and Electrode Currents in the Inductively Driven Surface-Plasma Negative Hydrogen Ion Source
    Belchenko, Yu.
    Ivanov, A.
    Sanin, A.
    Sotnikov, O.
    FIFTH INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2016), 2017, 1869
  • [30] Ion beam transport: modelling and experimental measurements on a large negative ion source in view of the ITER heating neutral beam
    Veltri, P.
    Sartori, E.
    Agostinetti, P.
    Aprile, D.
    Brombin, M.
    Chitarin, G.
    Fonnesu, N.
    Ikeda, K.
    Kisaki, M.
    Nakano, H.
    Pimazzoni, A.
    Tsumori, K.
    Serianni, G.
    NUCLEAR FUSION, 2017, 57 (01)