On Z2k-dual binary codes

被引:29
|
作者
Krotov, Denis S. [1 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
关键词
Gray map; Hadamard codes; MacWilliams identity; perfect codes; Z(2)k-linearity;
D O I
10.1109/TIT.2007.892787
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new generalization of the Gray map is introduced. The new generalization Phi : Z(2k)(n) -> Z(2)(2k-2-1n) is connected with the known generalized Gray map phi in the following way: if we take two dual linear Z(2k) -codes and construct binary codes from them using the generalizations phi and Phi of the Gray map, then the weight enumerators of the binary codes obtained will satisfy the MacWilliams identity.. The classes of Z(2k) -linear Hadamard codes and Co-Z(2k)-linear extended 1-perfect codes are described, where co-Z(2k)-linearity means that the code can be obtained from a linear Z(2k)-code with the help of the new generalized Gray map.
引用
下载
收藏
页码:1532 / 1537
页数:6
相关论文
共 50 条
  • [11] On Z2Z4-additive complementary dual codes and related LCD codes
    Benbelkacem, N.
    Borges, J.
    Dougherty, S. T.
    Fernandez-Cordoba, C.
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 62
  • [12] Z2Z4-Additive Cyclic Codes, Generator Polynomials, and Dual Codes
    Borges, Joaquim
    Fernandez-Cordoba, Cristina
    Ten-Valls, Roger
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (11) : 6348 - 6354
  • [13] Binary Images of Z2Z4-Additive Cyclic Codes
    Borges, Joaquim
    Dougherty, Steven T.
    Fernandez-Cordoba, Cristina
    Ten-Valls, Roger
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (12) : 7551 - 7556
  • [14] Duadic codes over Z2k
    Ling, S
    Solé, P
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (04) : 1581 - 1589
  • [15] On Z2k-linear and quaternary codes
    Tapia-Recillas, H
    Vega, G
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2003, 17 (01) : 103 - 113
  • [17] Z2Z4-Additive formally self-dual codes
    Dougherty, S. T.
    Fernandez-Cordoba, C.
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 72 (02) : 435 - 453
  • [18] Binary linear complementary dual codes
    Masaaki Harada
    Ken Saito
    Cryptography and Communications, 2019, 11 : 677 - 696
  • [19] On the dual binary codes of the triangular graphs
    Rodrigues, B. G.
    EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (01) : 266 - 272
  • [20] Binary linear complementary dual codes
    Harada, Masaaki
    Saito, Ken
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (04): : 677 - 696