Stability theorems for Fourier frames and wavelet Riesz bases

被引:64
|
作者
Balan, R
机构
[1] Princeton University,Program in Applied and Computational Mathematics
关键词
frames; Riesz basis; nonharmonic series; wavelets;
D O I
10.1007/BF02648880
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present two applications of a Stability Theorem of Hilbert frames to nonharmonic Fourier series and wavelet Riesz basis. The first result is an enhancement of the Paley-Wiener type constant for nonharmonic series given by Duffin and Schaefer in [6] and used recently in some applications (see (3]). In the case of an orthonormal basis, our estimate reduces to Kadec' optimal 1/4 result. The second application proves that a phenomenon discovered by Daubechies and Tchamitchian [4] for the orthonormal Meyer wavelet basis (stability of the Riesz basis property under small changes of the translation parameter) actually holds for a large class of wavelet Riesz bases.
引用
收藏
页码:499 / 504
页数:6
相关论文
共 50 条
  • [21] On a conjecture about MRA Riesz wavelet bases
    Han, B
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (07) : 1973 - 1983
  • [22] Lifting scheme and biorthogonal wavelet Riesz bases
    Zhou, Xianbo
    Zhongshan Daxue Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni, 1998, 37 (04): : 38 - 42
  • [23] Bandpass pseudo prolate shift frames and Riesz bases
    Hogan, Jeffrey A.
    Lakey, Joseph D.
    2017 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2017, : 369 - 372
  • [24] Perturbation of frames and Riesz bases in Hilbert C*-modules
    Han, Deguang
    Jing, Wu
    Mohapatra, Ram N.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (5-7) : 746 - 759
  • [25] On Uncountable Frames and Riesz Bases in Nonseparable Banach Spaces
    Ismailov, Migdad I.
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2022, 19 (02): : 149 - 170
  • [26] φ-FRAMES AND φ-RIESZ BASES ON LOCALLY COMPACT ABELIAN GROUPS
    Gol, Rajab Ali Kamyabi
    Tousi, Reihaneh Raisi
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (05) : 899 - 912
  • [27] On Hilbert-Schmidt Frames for Operators and Riesz Bases
    Jyoti
    Vashisht, Lalit Kumar
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2023, 19 (04) : 799 - 821
  • [28] Approximately Hadamard Matrices and Riesz Bases in Random Frames
    Dong, Xiaoyu
    Rudelson, Mark
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (03) : 2044 - 2065
  • [29] Convolution, Fourier analysis, and distributions generated by Riesz bases
    Michael Ruzhansky
    Niyaz Tokmagambetov
    Monatshefte für Mathematik, 2018, 187 : 147 - 170
  • [30] Convolution, Fourier analysis, and distributions generated by Riesz bases
    Ruzhansky, Michael
    Tokmagambetov, Niyaz
    MONATSHEFTE FUR MATHEMATIK, 2018, 187 (01): : 147 - 170