Chiral family classification of fermionic Z2 x Z2 heterotic orbifold models

被引:80
|
作者
Faraggi, Alon E. [1 ]
Kounnas, Costas
Rizos, John
机构
[1] Univ Liverpool, Dept Math Sci, Liverpool L69 7ZL, Merseyside, England
[2] Univ Paris 06, Ecole Normale Super, CNRS,UMR 8549, Phys Theor Lab, F-75231 Paris 05, France
[3] Univ Ioannina, Dept Phys, GR-45110 Ioannina, Greece
关键词
D O I
10.1016/j.physletb.2006.09.071
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Free fermionic construction of four-dimensional string vacua, are related to the Z(2) X Z(2) orbifolds at special points in the moduli space, and yielded the most realistic three family string models to date. Using free fermionic construction techniques we are able to classify more than 10(10) string vacua by the net family and anti-family number. Using a Monte Carlo technique we find a bell shaped distribution that peaks at vanishing net number of chiral families. We also observe that similar to 15% of the models have three net chiral families. In addition to mirror symmetry we find that the distribution exhibits a symmetry under the exchange of (spinor plus anti-spinor) representations with vectorial representations. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:84 / 89
页数:6
相关论文
共 50 条
  • [31] Magnetized four-dimensional Z2 x Z2 orientifolds
    Larosa, M
    Pradisi, G
    NUCLEAR PHYSICS B, 2003, 667 (1-2) : 261 - 309
  • [32] AN INFINITE SUBALGEBRA OF EXTA(Z2 Z2
    MAHOWALD, M
    TANGORA, M
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 132 (01) : 263 - &
  • [33] RECURSION OPERATORS FOR RATIONAL BUNDLE ON sl (3; C) WITH Z2 x Z2 x Z2 REDUCTION OF MIKHAILOV TYPE
    Yanovski, Alexandar
    PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2015, : 301 - 311
  • [34] F(Z,1 ,Z2 ) plus A(Z1 ,Z2 )G(Z1 ,Z2 ) equals H(Z1 ,Z2 )..
    Lai, Yhean-Sen
    IEEE transactions on circuits and systems, 1986, CAS-33 (05): : 542 - 544
  • [35] On elevating free-fermion Z2 x Z2 orbifolds models to compactifications of F theory
    Berglund, P
    Ellis, J
    Faraggi, AE
    Nanopoulos, DV
    Qiu, Z
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (09): : 1345 - 1362
  • [36] Completing the eclectic flavor scheme of the Z2 orbifold
    Baur, Alexander
    Kade, Moritz
    Nilles, Hans Peter
    Ramos-Sanchez, Saul
    Vaudrevange, Patrick K. S.
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (06)
  • [37] Spectral Theory of sl(3, C) Auxiliary Linear Problem with Z2 x Z2 x Z2 Reduction of Mikhailov Type
    Yanovski, A. B.
    ADVANCED COMPUTING IN INDUSTRIAL MATHEMATICS, 2017, 681 : 251 - 262
  • [38] Quantum phase transitions out of a Z2 x Z2 topological phase
    Jahromi, Saeed S.
    Masoudi, S. Farhad
    Kargarian, Mehdi
    Schmidt, Kai Phillip
    PHYSICAL REVIEW B, 2013, 88 (21)
  • [39] Modular Symmetries, Threshold Corrections and Moduli for Z2 x Z2 Orbifolds
    Bailin, D.
    Love, A.
    Sabra, W. A.
    Thomas, S.
    Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 1994, 319
  • [40] Intersecting D-branes on shift Z2 x Z2 orientifolds
    Blumenhagen, Ralph
    Plauschinn, Erik
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (08):