A residual-based a posteriori error estimator for single-phase Darcy flow in fractured porous media

被引:16
|
作者
Chen, Huangxin [1 ,2 ,3 ]
Sun, Shuyu [3 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Xiamen 361005, Fujian, Peoples R China
[3] King Abdullah Univ Sci & Technol, Div Phys Sci & Engn, Computat Transport Phenomena Lab, Thuwal 239556900, Saudi Arabia
关键词
MIXED FINITE-ELEMENT; EFFICIENT NUMERICAL-MODEL; DISCONTINUOUS GALERKIN; REACTIVE TRANSPORT; FLUID-FLOW; INTERFACES;
D O I
10.1007/s00211-016-0851-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we develop an a posteriori error estimator for a mixed finite element method for single-phase Darcy flow in a two-dimensional fractured porous media. The discrete fracture model is applied to model the fractures by one-dimensional fractures in a two-dimensional domain. We consider Raviart-Thomas mixed finite element method for the approximation of the coupled Darcy flows in the fractures and the surrounding porous media. We derive a robust residual-based a posteriori error estimator for the problem with non-intersecting fractures. The reliability and efficiency of the a posteriori error estimator are established for the error measured in an energy norm. Numerical results verifying the robustness of the proposed a posteriori error estimator are given. Moreover, our numerical results indicate that the a posteriori error estimator also works well for the problem with intersecting fractures.
引用
收藏
页码:805 / 839
页数:35
相关论文
共 50 条
  • [21] Residual-based a posteriori error estimators for algebraic stabilizations
    Jha, Abhinav
    [J]. APPLIED MATHEMATICS LETTERS, 2024, 157
  • [22] A mathematical model for thermal single-phase flow and reactive transport in fractured porous media
    Fumagalli, Alessio
    Scotti, Anna
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 434
  • [23] Verification benchmarks for single-phase flow in three-dimensional fractured porous media
    Berre, Inga
    Boon, Wietse M.
    Flemisch, Bernd
    Fumagalli, Alessio
    Glaeser, Dennis
    Keilegavlen, Eirik
    Scotti, Anna
    Stefansson, Ivar
    Tatomir, Alexandru
    Brenner, Konstantin
    Burbulla, Samuel
    Devloo, Philippe
    Duran, Omar
    Favino, Marco
    Hennicker, Julian
    Lee, I-Hsien
    Lipnikov, Konstantin
    Masson, Roland
    Mosthaf, Klaus
    Nestola, Maria Giuseppina Chiara
    Ni, Chuen-Fa
    Nikitin, Kirill
    Schadle, Philipp
    Svyatskiy, Daniil
    Yanbarisov, Ruslan
    Zulian, Patrick
    [J]. ADVANCES IN WATER RESOURCES, 2021, 147
  • [24] Numerical modelling of coupled single-phase fluid flow and geomechanics in a fractured porous media
    Gudala, Manojkumar
    Govindarajan, Suresh Kumar
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 191
  • [25] A residual-based a posteriori error estimator for the hp-finite element method for Maxwell's equations
    Buerg, M.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2012, 62 (08) : 922 - 940
  • [26] A residual-based a posteriori error estimator for a two-dimensional fluid-solid interaction problem
    Gatica, Gabriel N.
    Hsiao, George C.
    Meddahi, Salim
    [J]. NUMERISCHE MATHEMATIK, 2009, 114 (01) : 63 - 106
  • [27] A residual-based a posteriori error estimator for the plane linear elasticity problem with pure traction boundary conditions
    Dominguez, Carolina
    Gatica, Gabriel N.
    Marquez, Antonio
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 292 : 486 - 504
  • [28] SINGLE-PHASE FLOW THROUGH POROUS MEDIA
    SLATTERY, JC
    [J]. AICHE JOURNAL, 1969, 15 (06) : 866 - &
  • [29] On residual-based a posteriori error estimation in hp-FEM
    J.M. Melenk
    B.I. Wohlmuth
    [J]. Advances in Computational Mathematics, 2001, 15 : 311 - 331
  • [30] Residual-based a posteriori error estimation for stochastic magnetostatic problems
    Mac, D. H.
    Tang, Z.
    Clenet, S.
    Creuse, E.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 289 : 51 - 67