Modeling global secondary organic aerosol formation and processing with the volatility basis set: Implications for anthropogenic secondary organic aerosol

被引:119
|
作者
Farina, Salvatore C. [1 ]
Adams, Peter J. [1 ]
Pandis, Spyros N. [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Ctr Atmospher Particle Studies, Pittsburgh, PA 15213 USA
[2] Fdn Res & Technol, Inst Chem Engn & High Temp Chem Proc, Patras, Greece
关键词
GENERAL-CIRCULATION MODEL; SOA FORMATION; PARTICULATE MATTER; CHEMISTRY; TRANSPORT; SULFATE; SIMULATION; OXIDATION; POLLUTION; MASS;
D O I
10.1029/2009JD013046
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The volatility basis set, a computationally efficient framework for the description of organic aerosol partitioning and chemical aging, is implemented in the Goddard Institute for Space Studies General Circulation Model II' for a coupled global circulation and chemical transport model to simulate secondary organic aerosol (SOA) formation. The latest smog chamber information about the yields of anthropogenic and biogenic precursors is incorporated in the model. SOA formation from monoterpenes, sesquiterpenes, isoprene, and anthropogenic precursors is estimated as 17.2, 3.9, 6.5, and 1.6 Tg yr (1), respectively. Reducing water solubility of secondary organic gas from 105 to 103 mol L (1) atm (1) (1 atm = 1.01325 x 10(5) N m (2)) leads to a 90% increase in SOA production and an increase of over 340% in total atmospheric burden, from 0.54 to 2.4 Tg. Increasing the temperature sensitivity of SOA leads to a 30% increase in production, to 38.2 Tg yr(-1). Since the additional SOA is formed at high altitude, where deposition time scales are longer, the average lifetime is doubled from 6.8 to 14.3 days, resulting in a near tripling of atmospheric burden to 1.5 Tg. Chemical aging of anthropogenic SOA by gas-phase reaction of the SOA components with the hydroxyl radical adds an additional 2.7-9.3 Tg yr(-1) of anthropogenic SOA to the above production rates and nearly doubles annual average total SOA burdens. The possibility of such high anthropogenic SOA production rates challenges the assumption that anthropogenic volatile organic compounds are not important SOA precursors on a global scale. Model predictions with and without SOA aging are compared with data from two surface observation networks: the Interagency Monitoring of Protected Visual Environments for the United States and the European Monitoring and Evaluation Programme.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] CCN activity and volatility of β-caryophyllene secondary organic aerosol
    Frosch, M.
    Bilde, M.
    Nenes, A.
    Praplan, A. P.
    Juranyi, Z.
    Dommen, J.
    Gysel, M.
    Weingartner, E.
    Baltensperger, U.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (04) : 2283 - 2297
  • [22] Importance of global aerosol modeling including secondary organic aerosol formed from monoterpene
    Goto, Daisuke
    Takemura, Toshihiko
    Nakajima, Teruyuki
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D7)
  • [23] Thermodynamics of oligomer formation: implications for secondary organic aerosol formation and reactivity
    DePalma, Joseph W.
    Horan, Andrew J.
    Hall, Wiley A.
    Johnston, Murray V.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (18) : 6935 - 6944
  • [24] Investigative modeling of new pathways for secondary organic aerosol formation
    Pun, B. K.
    Seigneur, C.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (09) : 2199 - 2216
  • [25] Organic chemistry in aerosol water: Secondary organic aerosol formation and impacts on aerosol climate properties
    McNeill, V. Faye
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [26] Anthropogenic amplification of biogenic secondary organic aerosol production
    Zheng, Yiqi
    Horowitz, Larry W. W.
    Menzel, Raymond
    Paynter, David J.
    Naik, Vaishali
    Li, Jingyi
    Mao, Jingqiu
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2023, 23 (15) : 8993 - 9007
  • [27] A review of the anthropogenic influence on biogenic secondary organic aerosol
    Hoyle, C. R.
    Boy, M.
    Donahue, N. M.
    Fry, J. L.
    Glasius, M.
    Guenther, A.
    Hallar, A. G.
    Hartz, K. Huff
    Petters, M. D.
    Petaja, T.
    Rosenoern, T.
    Sullivan, A. P.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (01) : 321 - 343
  • [28] Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs)
    Chan, A. W. H.
    Kautzman, K. E.
    Chhabra, P. S.
    Surratt, J. D.
    Chan, M. N.
    Crounse, J. D.
    Kuerten, A.
    Wennberg, P. O.
    Flagan, R. C.
    Seinfeld, J. H.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (09) : 3049 - 3060
  • [29] Age evolution of secondary organic aerosol: Impacts of regional transport and aerosol volatility
    Zhao, Bingnan
    Su, Fangcheng
    Wang, Ke
    Ying, Qi
    Zhang, Ruiqin
    Xu, Qixiang
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 904
  • [30] Aerosol volatility measurement using an improved thermodenuder: Application to secondary organic aerosol
    An, Woo Jin
    Pathak, Ravi K.
    Lee, Byong-Hyoek
    Pandis, Spyros N.
    [J]. JOURNAL OF AEROSOL SCIENCE, 2007, 38 (03) : 305 - 314