Age evolution of secondary organic aerosol: Impacts of regional transport and aerosol volatility

被引:0
|
作者
Zhao, Bingnan [1 ]
Su, Fangcheng [2 ,3 ]
Wang, Ke [1 ,2 ]
Ying, Qi [4 ]
Zhang, Ruiqin [1 ,2 ]
Xu, Qixiang [1 ,2 ]
机构
[1] Zhengzhou Univ, Sch Ecol & Environm, Zhengzhou 450001, Peoples R China
[2] Zhengzhou Univ, Inst Environm Sci, Zhengzhou 450001, Peoples R China
[3] Zhengzhou Univ, Coll Chem, Zhengzhou 450001, Peoples R China
[4] Texas A&M Univ, Zachry Dept Civil Engn, College Stn, TX 77843 USA
关键词
Secondary organic aerosol; Atmospheric age; Temporal apportionment; Source apportionment; Gravitational center of concentration; CMAQ; PARTICULATE MATTER; SOURCE APPORTIONMENT; HAZE EVENTS; EMISSIONS; POLLUTION; CHINA; MODEL; GAS; INVENTORY; CHEMISTRY;
D O I
10.1016/j.scitotenv.2023.166748
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, a revised CMAQ model incorporating source and temporal apportioning functions has been used to analyze the aging characteristics of SOA in East Asia. The results show that in the aerosol phase, the fraction of the non-volatile components typically fluctuates around 75 %-95 %, and aromatic hydrocarbon precursors contribute significantly to SOA, accounting for 45.6 %-72.7 % in winter and 29.1 %-52.7 % in summer. Transport due to meteorological conditions does not affect the SOA volatility profile in the cities, while regional source composition has been found to be important for the characterization of the properties of SOA in cities. When the SOA regional composition type is a multi-region-imported-dominated type (MRT), its age composition type tends to be an old-age-SOA-dominated type (OAT) (>48 h). Additionally, transport also causes fluctuations in the range of hourly SOA with atmospheric age of 96 h or higher. The SOAs normally transport through seasonal monsoon and could migrate longer in winter (700-1500 km in January) than in other seasons (250-900 km in April; 500-1200 km in July; 300-1000 km in October). Additionally, in winter, non-volatile SOA generally has a longer transport distance (700-1600 km) than semi- and low-volatile SOA (300-1300 km and 600-1500 km). Furthermore, during the transport process, geographical barriers have negligible impact on SOA in the 48+ hour age group.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Age evolution of secondary organic aerosol: Impacts of regional transport and aerosol volatility
    Zhao, Bingnan
    Su, Fangcheng
    Wang, Ke
    Ying, Qi
    Zhang, Ruiqin
    Xu, Qixiang
    [J]. Science of the Total Environment, 2023, 904
  • [2] Organic chemistry in aerosol water: Secondary organic aerosol formation and impacts on aerosol climate properties
    McNeill, V. Faye
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [3] Aerosol volatility measurement using an improved thermodenuder: Application to secondary organic aerosol
    An, Woo Jin
    Pathak, Ravi K.
    Lee, Byong-Hyoek
    Pandis, Spyros N.
    [J]. JOURNAL OF AEROSOL SCIENCE, 2007, 38 (03) : 305 - 314
  • [4] SECONDARY ORGANIC AEROSOL FORMATION AND TRANSPORT
    PANDIS, SN
    HARLEY, RA
    CASS, GR
    SEINFELD, JH
    [J]. ATMOSPHERIC ENVIRONMENT PART A-GENERAL TOPICS, 1992, 26 (13): : 2269 - 2282
  • [5] CCN activity and volatility of β-caryophyllene secondary organic aerosol
    Frosch, M.
    Bilde, M.
    Nenes, A.
    Praplan, A. P.
    Juranyi, Z.
    Dommen, J.
    Gysel, M.
    Weingartner, E.
    Baltensperger, U.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (04) : 2283 - 2297
  • [6] Volatility of secondary organic aerosol from the ozonolysis of monoterpenes
    Lee, Byong-Hyoek
    Pierce, Jeffrey R.
    Engelhart, Gabriella J.
    Pandis, Spyros N.
    [J]. ATMOSPHERIC ENVIRONMENT, 2011, 45 (14) : 2443 - 2452
  • [7] Modeling global secondary organic aerosol formation and processing with the volatility basis set: Implications for anthropogenic secondary organic aerosol
    Farina, Salvatore C.
    Adams, Peter J.
    Pandis, Spyros N.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
  • [8] Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere
    Kroll, Jesse H.
    Seinfeld, John H.
    [J]. ATMOSPHERIC ENVIRONMENT, 2008, 42 (16) : 3593 - 3624
  • [9] Insights into the Regional Transport and Local Formation of Secondary Organic Aerosol in Delhi, India
    Bhowmik, Himadri Sekhar
    Tripathi, Sachchida Nand
    Sahu, Ravi
    Shukla, Ashutosh Kumar
    Lalchandani, Vipul
    Talukdar, Shamitaksha
    Tripathi, Nidhi
    Sahu, Lokesh
    [J]. AEROSOL AND AIR QUALITY RESEARCH, 2022, 22 (12)
  • [10] A large source of low-volatility secondary organic aerosol
    Mikael Ehn
    Joel A. Thornton
    Einhard Kleist
    Mikko Sipilä
    Heikki Junninen
    Iida Pullinen
    Monika Springer
    Florian Rubach
    Ralf Tillmann
    Ben Lee
    Felipe Lopez-Hilfiker
    Stefanie Andres
    Ismail-Hakki Acir
    Matti Rissanen
    Tuija Jokinen
    Siegfried Schobesberger
    Juha Kangasluoma
    Jenni Kontkanen
    Tuomo Nieminen
    Theo Kurtén
    Lasse B. Nielsen
    Solvejg Jørgensen
    Henrik G. Kjaergaard
    Manjula Canagaratna
    Miikka Dal Maso
    Torsten Berndt
    Tuukka Petäjä
    Andreas Wahner
    Veli-Matti Kerminen
    Markku Kulmala
    Douglas R. Worsnop
    Jürgen Wildt
    Thomas F. Mentel
    [J]. Nature, 2014, 506 : 476 - 479