Influence of particle shape on the rheological behavior of three-phase non-brownian suspensions

被引:32
|
作者
Maurath, Johannes [1 ]
Bitsch, Boris [1 ]
Schwegler, Yvonne [1 ]
Willenbacher, Norbert [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Mech Proc Engn & Mech, Gotthard Franz Str 3, D-76131 Karlsruhe, Germany
关键词
Capillary suspensions; Particle shape; Aspect ratio; Microstructure; Rheology; Three-phase suspensions; CAPILLARY FORCES; LASER DIFFRACTION; LIQUID BRIDGE; FLOW BEHAVIOR; NETWORKS; SYSTEMS; PASTE;
D O I
10.1016/j.colsurfa.2016.03.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Capillary suspensions are three-phase fluids comprising a solid and two immiscible, liquid phases with unique texture and flow properties. So far, research focused on isometric particles, here we discuss how the addition of a second, immiscible fluid affects structure and flow of suspensions including anisotropic particles. Differently shaped calcium carbonate as well as graphite and aluminum particles have been investigated. For needle-shaped and scalenohedral particles no increase in yield stress sigma(y) or storage modulus G' characteristic for a strong capillary force controlled, percolating particle network is observed when a secondary fluid is added. In contrast, a pronounced increase in sigma(y) and G' is found when a secondary fluid is introduced to suspensions of plate-like particles and optical as well as electron microscopy confirm the formation of a sample-spanning network characteristic for capillary suspensions. Suspensions of isometric particles exhibit a distinct maximum in sigma(y) or G' at low fractions of secondary fluid to particle volume fraction phi(sec)/phi(solid) approximate to 0.1-0.2, whereas suspensions of plate-like particles exhibit constant sigma(y) and G' values over a wide range of phi(sec)/phi(solid) values up to approximate to 1 until spherical agglomeration occurs. Due to the different shape of the capillary bridges suspensions of plate-like particles can accommodate much larger fractions of secondary fluid until spherical agglomeration sets in than systems including spherical particles thus offering a versatile basic concept for the design of complex multi-component paste-like products. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:316 / 326
页数:11
相关论文
共 50 条
  • [41] Stripes in sheared non-Brownian suspensions with a free surface
    Govindarajan, R
    Nott, PR
    Ramaswamy, S
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 318 (1-2) : 80 - 84
  • [42] Shear Flow of Non-Brownian Suspensions Close to Jamming
    Andreotti, Bruno
    Barrat, Jean-Louis
    Heussinger, Claus
    PHYSICAL REVIEW LETTERS, 2012, 109 (10)
  • [43] On the shear thinning of non-Brownian suspensions: Friction or adhesion?
    Papadopoulou, Anastasia
    Gillissen, Jurriaan J.
    Wilson, Helen J.
    Tiwari, Manish K.
    Balabani, Stavroula
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2020, 281
  • [44] The role of friction in the yielding of adhesive non-Brownian suspensions
    Richards, J. A.
    Guy, B. M.
    Blanco, E.
    Hermes, M.
    Poy, G.
    Poon, W. C. K.
    JOURNAL OF RHEOLOGY, 2020, 64 (02) : 405 - 412
  • [45] Viscosity scaling in suspensions of non-Brownian rodlike particles
    Ralambotiana, T
    Blanc, R
    Chaouche, M
    PHYSICS OF FLUIDS, 1997, 9 (12) : 3588 - 3594
  • [46] Rheology of non-Brownian suspensions: a rough contact story
    Lemaire, Elisabeth
    Blanc, Frederic
    Claudet, Cyrille
    Gallier, Stany
    Lobry, Laurent
    Peters, Francois
    RHEOLOGICA ACTA, 2023, 62 (5-6) : 253 - 268
  • [47] Hydrodynamic screening in sedimenting suspensions of non-Brownian spheres
    Ladd, AJC
    PHYSICAL REVIEW LETTERS, 1996, 76 (08) : 1392 - 1395
  • [48] Dynamic simulation of suspensions of non-Brownian hard spheres
    Dratler, DI
    Schowalter, WR
    JOURNAL OF FLUID MECHANICS, 1996, 325 : 53 - 77
  • [49] Normal stress measurements in sheared non-Brownian suspensions
    Garland, S.
    Gauthier, G.
    Martin, J.
    Morris, J. F.
    JOURNAL OF RHEOLOGY, 2013, 57 (01) : 71 - 88
  • [50] Shear thickening regimes of dense non-Brownian suspensions
    Ness, Christopher
    Sun, Jin
    SOFT MATTER, 2016, 12 (03) : 914 - 924