Influence of particle shape on the rheological behavior of three-phase non-brownian suspensions

被引:32
|
作者
Maurath, Johannes [1 ]
Bitsch, Boris [1 ]
Schwegler, Yvonne [1 ]
Willenbacher, Norbert [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Mech Proc Engn & Mech, Gotthard Franz Str 3, D-76131 Karlsruhe, Germany
关键词
Capillary suspensions; Particle shape; Aspect ratio; Microstructure; Rheology; Three-phase suspensions; CAPILLARY FORCES; LASER DIFFRACTION; LIQUID BRIDGE; FLOW BEHAVIOR; NETWORKS; SYSTEMS; PASTE;
D O I
10.1016/j.colsurfa.2016.03.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Capillary suspensions are three-phase fluids comprising a solid and two immiscible, liquid phases with unique texture and flow properties. So far, research focused on isometric particles, here we discuss how the addition of a second, immiscible fluid affects structure and flow of suspensions including anisotropic particles. Differently shaped calcium carbonate as well as graphite and aluminum particles have been investigated. For needle-shaped and scalenohedral particles no increase in yield stress sigma(y) or storage modulus G' characteristic for a strong capillary force controlled, percolating particle network is observed when a secondary fluid is added. In contrast, a pronounced increase in sigma(y) and G' is found when a secondary fluid is introduced to suspensions of plate-like particles and optical as well as electron microscopy confirm the formation of a sample-spanning network characteristic for capillary suspensions. Suspensions of isometric particles exhibit a distinct maximum in sigma(y) or G' at low fractions of secondary fluid to particle volume fraction phi(sec)/phi(solid) approximate to 0.1-0.2, whereas suspensions of plate-like particles exhibit constant sigma(y) and G' values over a wide range of phi(sec)/phi(solid) values up to approximate to 1 until spherical agglomeration occurs. Due to the different shape of the capillary bridges suspensions of plate-like particles can accommodate much larger fractions of secondary fluid until spherical agglomeration sets in than systems including spherical particles thus offering a versatile basic concept for the design of complex multi-component paste-like products. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:316 / 326
页数:11
相关论文
共 50 条
  • [11] Shear thinning in non-Brownian suspensions
    Chatte, Guillaume
    Comtet, Jean
    Nigues, Antoine
    Bocquet, Lyderic
    Siria, Alessandro
    Ducouret, Guylaine
    Lequeux, Francois
    Lenoir, Nicolas
    Ovarlez, Guillaume
    Colin, Annie
    SOFT MATTER, 2018, 14 (06) : 879 - 893
  • [12] Granulation and bistability in non-Brownian suspensions
    Michael E. Cates
    Matthieu Wyart
    Rheologica Acta, 2014, 53 : 755 - 764
  • [13] Rheology of Confined Non-Brownian Suspensions
    Fornari, Walter
    Brandt, Luca
    Chaudhuri, Pinaki
    Lopez, Cyan Umbert
    Mitra, Dhrubaditya
    Picano, Francesco
    PHYSICAL REVIEW LETTERS, 2016, 116 (01)
  • [14] Rheology of bidisperse non-Brownian suspensions
    Singh, Abhinendra
    Ness, Christopher
    Sharma, Abhishek K.
    de Pablo, Juan J.
    Jaeger, Heinrich M.
    arXiv, 2023,
  • [15] Rheology of bidisperse non-Brownian suspensions
    Singh, Abhinendra
    Ness, Christopher
    Sharma, Abhishek K.
    Pablo, Juan J. de
    Jaeger, Heinrich M.
    PHYSICAL REVIEW E, 2024, 110 (03)
  • [16] Porous structures impact on particle dynamics of non-Brownian and noncolloidal suspensions
    Haffner, Eileen A.
    Wilkie, Theresa
    Higham, Jonathan E.
    Mirbod, Parisa
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2024, 178
  • [17] Impact of particle stiffness on shear-thinning of non-Brownian suspensions
    Gilbert, Duncan
    Valette, Rudy
    Lemaire, Elisabeth
    JOURNAL OF RHEOLOGY, 2022, 66 (01) : 161 - 176
  • [18] Effect of Rotary Inertia on the Orientational Behavior of Dilute Brownian and Non-Brownian Fiber Suspensions
    Moosaie, Amin
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2013, 34 (06) : 870 - 879
  • [19] Non-Brownian particle gel
    Yuan, Chia-Nan
    Sheng, Yu-Jane
    Tsao, Heng-Kwong
    APPLIED PHYSICS LETTERS, 2009, 95 (23)
  • [20] Slip on a particle surface as the possible origin of shear thinning in non-Brownian suspensions
    Kroupa, Martin
    Soos, Miroslav
    Kosek, Juraj
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (08) : 5979 - 5984