Influence of particle shape on the rheological behavior of three-phase non-brownian suspensions

被引:32
|
作者
Maurath, Johannes [1 ]
Bitsch, Boris [1 ]
Schwegler, Yvonne [1 ]
Willenbacher, Norbert [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Mech Proc Engn & Mech, Gotthard Franz Str 3, D-76131 Karlsruhe, Germany
关键词
Capillary suspensions; Particle shape; Aspect ratio; Microstructure; Rheology; Three-phase suspensions; CAPILLARY FORCES; LASER DIFFRACTION; LIQUID BRIDGE; FLOW BEHAVIOR; NETWORKS; SYSTEMS; PASTE;
D O I
10.1016/j.colsurfa.2016.03.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Capillary suspensions are three-phase fluids comprising a solid and two immiscible, liquid phases with unique texture and flow properties. So far, research focused on isometric particles, here we discuss how the addition of a second, immiscible fluid affects structure and flow of suspensions including anisotropic particles. Differently shaped calcium carbonate as well as graphite and aluminum particles have been investigated. For needle-shaped and scalenohedral particles no increase in yield stress sigma(y) or storage modulus G' characteristic for a strong capillary force controlled, percolating particle network is observed when a secondary fluid is added. In contrast, a pronounced increase in sigma(y) and G' is found when a secondary fluid is introduced to suspensions of plate-like particles and optical as well as electron microscopy confirm the formation of a sample-spanning network characteristic for capillary suspensions. Suspensions of isometric particles exhibit a distinct maximum in sigma(y) or G' at low fractions of secondary fluid to particle volume fraction phi(sec)/phi(solid) approximate to 0.1-0.2, whereas suspensions of plate-like particles exhibit constant sigma(y) and G' values over a wide range of phi(sec)/phi(solid) values up to approximate to 1 until spherical agglomeration occurs. Due to the different shape of the capillary bridges suspensions of plate-like particles can accommodate much larger fractions of secondary fluid until spherical agglomeration sets in than systems including spherical particles thus offering a versatile basic concept for the design of complex multi-component paste-like products. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:316 / 326
页数:11
相关论文
共 50 条
  • [1] RHEOLOGICAL PROPERTIES OF NON-BROWNIAN SPHEROIDAL PARTICLE SUSPENSIONS
    RAO, BN
    TANG, L
    ALTAN, MC
    JOURNAL OF RHEOLOGY, 1994, 38 (05) : 1335 - 1351
  • [2] Rheological characterization of non-Brownian suspensions based on structure kinetics
    Vachaparambil, Kurian J.
    Martensson, Gustaf
    Essen, Lars
    SOLDERING & SURFACE MOUNT TECHNOLOGY, 2018, 30 (01) : 57 - 64
  • [3] Rheology of Non-Brownian Suspensions
    Denn, Morton M.
    Morris, Jeffrey F.
    ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, VOL 5, 2014, 5 : 203 - 228
  • [4] Rheology of Non-Brownian Suspensions
    Denn, Morton M.
    Morris, Jeffrey F.
    Annual Review of Chemical and Biomolecular Engineering, 2014, 5 (01) : 203 - 228
  • [5] Sedimentation of non-Brownian suspensions
    Abade, G. C.
    Cichocki, B.
    MICROPARTICLES IN STOKES FLOWS: SYMPOSIUM IN HONOR OF FRANCOIS FEUILLEBOIS' 65TH BIRTHDAY, 2012, 392
  • [6] Unsteady flow and particle migration in dense, non-Brownian suspensions
    Hermes, Michiel
    Guy, Ben M.
    Poon, Wilson C. K.
    Poy, Guilhem
    Cates, Michael E.
    Wyart, Matthieu
    JOURNAL OF RHEOLOGY, 2016, 60 (05) : 905 - 916
  • [7] A numerical study of the rheological properties of suspensions of rigid, non-Brownian fibres
    Mackaplow, M.B.
    Shaqfeh, E.S.G.
    Journal of Fluid Mechanics, 1996, 329 : 155 - 186
  • [8] A numerical study of the rheological properties of suspensions of rigid, non-Brownian fibres
    Mackaplow, MB
    Shaqfeh, ESG
    JOURNAL OF FLUID MECHANICS, 1996, 329 : 155 - 186
  • [9] Unifying disparate rate-dependent rheological regimes in non-Brownian suspensions
    More, R., V
    Ardekani, A. M.
    PHYSICAL REVIEW E, 2021, 103 (06)
  • [10] Granulation and bistability in non-Brownian suspensions
    Cates, Michael E.
    Wyart, Matthieu
    RHEOLOGICA ACTA, 2014, 53 (10-11) : 755 - 764