ENERGY METHODS FOR HARTREE TYPE EQUATIONS WITH INVERSE-SQUARE POTENTIALS

被引:11
|
作者
Suzuki, Toshiyuki [1 ]
机构
[1] Tokyo Univ Sci, Dept Math, Shinjuku Ku, Tokyo 1628601, Japan
来源
关键词
SCHRODINGER-EQUATIONS; CAUCHY-PROBLEM; WAVE;
D O I
10.3934/eect.2013.2.531
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonlinear Schrodinger equations with nonlocal nonlinearities described by integral operators are considered. This generalizes usual Hartree type equations (HE)(0). We construct weak solutions to (HE), a a not equal 0, even if the kernel is of non-convolution type. The advantage of our methods is the applicability to the problem with strongly singular potential a vertical bar x vertical bar(-2) as a term in the linear part and with critical nonlinearity.
引用
收藏
页码:531 / 542
页数:12
相关论文
共 50 条
  • [41] Long-time deviations from exponential decay for inverse-square potentials
    Martorell, J.
    Muga, J. G.
    Sprung, D. W. L.
    PHYSICAL REVIEW A, 2008, 77 (04):
  • [43] On the inhomogeneous NLS with inverse-square potential
    Luccas Campos
    Carlos M. Guzmán
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [44] A NOTE ON INVERSE-SQUARE EXCHANGE MODELS
    GOHMANN, F
    WADATI, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (10) : 3585 - 3588
  • [45] The energy-critical nonlinear wave equation with an inverse-square potential
    Miao, Changxing
    Murphy, Jason
    Zheng, Jiqiang
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (02): : 417 - 456
  • [46] INVERSE-SQUARE ORBITS - GEOMETRIC APPROACH
    RAINWATER, JC
    WEINSTOCK, R
    AMERICAN JOURNAL OF PHYSICS, 1979, 47 (03) : 223 - 227
  • [47] Testming the gravitational inverse-square law
    Adelberger, E
    Heckel, B
    Hoyle, CD
    PHYSICS WORLD, 2005, 18 (04) : 41 - 45
  • [48] Inverse-square law experiment in space
    Paik, Ho Jung
    Prieto, Violeta A.
    Moody, M. Vol
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2007, 16 (12A): : 2181 - 2190
  • [49] NEWTON PRINCIPIA AND INVERSE-SQUARE ORBITS
    WEINSTOCK, R
    CONTEMPORARY PHYSICS, 1983, 24 (06) : 623 - 624
  • [50] INVERSE-SQUARE POTENTIAL AND THE QUANTUM VORTEX
    WU, H
    SPRUNG, DWL
    PHYSICAL REVIEW A, 1994, 49 (06): : 4305 - 4311