ENERGY METHODS FOR HARTREE TYPE EQUATIONS WITH INVERSE-SQUARE POTENTIALS

被引:11
|
作者
Suzuki, Toshiyuki [1 ]
机构
[1] Tokyo Univ Sci, Dept Math, Shinjuku Ku, Tokyo 1628601, Japan
来源
关键词
SCHRODINGER-EQUATIONS; CAUCHY-PROBLEM; WAVE;
D O I
10.3934/eect.2013.2.531
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonlinear Schrodinger equations with nonlocal nonlinearities described by integral operators are considered. This generalizes usual Hartree type equations (HE)(0). We construct weak solutions to (HE), a a not equal 0, even if the kernel is of non-convolution type. The advantage of our methods is the applicability to the problem with strongly singular potential a vertical bar x vertical bar(-2) as a term in the linear part and with critical nonlinearity.
引用
收藏
页码:531 / 542
页数:12
相关论文
共 50 条
  • [31] THE ENERGY-CRITICAL NLS WITH INVERSE-SQUARE POTENTIAL
    Killip, Rowan
    Miao, Changxing
    Visan, Monica
    Zhang, Junyong
    Zheng, Jiqiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (07) : 3831 - 3866
  • [32] The Averaged Equations of Motion in the Presence of an Inverse-Square Perturbing Acceleration
    T. N. Sannikova
    K. V. Kholshevnikov
    Astronomy Reports, 2019, 63 : 420 - 432
  • [33] ANALYSIS OF INVERSE-SQUARE POTENTIALS USING SUPERSYMMETRIC QUANTUM-MECHANICS
    GANGOPADHYAYA, A
    PANIGRAHI, PK
    SUKHATME, UP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (12): : 4295 - 4300
  • [34] Accurate WKB wave functions for weakly attractive inverse-square potentials
    Friedrich, H
    Trost, J
    PHYSICAL REVIEW A, 1999, 59 (02): : 1683 - 1686
  • [35] Accurate WKB wave functions for weakly attractive inverse-square potentials
    Friedrich, H.
    Trost, J.
    Physical Review A. Atomic, Molecular, and Optical Physics, 1999, 59 (02):
  • [36] MODELS WITH INVERSE-SQUARE EXCHANGE
    HA, ZNC
    HALDANE, FDM
    PHYSICAL REVIEW B, 1992, 46 (15): : 9359 - 9368
  • [37] APPLICATIONS OF THE INVERSE-SQUARE LAW
    LANDAUER, RS
    RADIOLOGY, 1945, 45 (04) : 400 - 400
  • [38] INVERSE-SQUARE LAW (EXPERIMENT)
    SALEM, SI
    CHRISTIANSEN, RG
    AMERICAN JOURNAL OF PHYSICS, 1969, 37 (11) : 1158 - +
  • [39] INVERSE-SQUARE LAW EXPERIMENT
    LUFBURROW, RA
    AMERICAN JOURNAL OF PHYSICS, 1963, 31 (01) : 60 - +
  • [40] Weighted estimates for powers and smoothing estimates of Schrodinger operators with inverse-square potentials
    The Anh Bui
    D'Ancona, Piero
    Xuan Thinh Duong
    Li, Ji
    Ly, Fu Ken
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (03) : 2771 - 2807