Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data

被引:22
|
作者
Chen, Qi [1 ,2 ]
Lu, Dengsheng [1 ,3 ]
Keller, Michael [4 ,5 ]
dos-Santos, Maiza Nara [4 ]
Bolfe, Edson Luis [4 ]
Feng, Yunyun [1 ]
Wang, Changwei [2 ]
机构
[1] Zhejiang A&F Univ, Sch Environm & Resource Sci, Key Lab Carbon Cycling Forest Ecosyst & Carbon Se, Lin An 311300, Peoples R China
[2] Univ Hawaii, Dept Geog, Honolulu, HI 96822 USA
[3] Michigan State Univ, Ctr Global Change & Earth Observat, E Lansing, MI 48823 USA
[4] Brazilian Agr Res Corp Embrapa, BR-13070115 Campinas, SP, Brazil
[5] USDA, Forest Serv, Int Inst Trop Forestry, San Juan, PR 00926 USA
关键词
agroforestry; aboveground biomass; lidar; mixed-effects models; allometry; wood density; LAND-COVER CLASSIFICATION; AFRICAN TROPICAL FOREST; CARBON SEQUESTRATION; BOREAL FOREST; UNCERTAINTY; SYSTEMS; VEGETATION; LANDSCAPE; STORAGE; VOLUME;
D O I
10.3390/rs8010021
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Agroforestry has large potential for carbon (C) sequestration while providing many economical, social, and ecological benefits via its diversified products. Airborne lidar is considered as the most accurate technology for mapping aboveground biomass (AGB) over landscape levels. However, little research in the past has been done to study AGB of agroforestry systems using airborne lidar data. Focusing on an agroforestry system in the Brazilian Amazon, this study first predicted plot-level AGB using fixed-effects regression models that assumed the regression coefficients to be constants. The model prediction errors were then analyzed from the perspectives of tree DBH (diameter at breast height)height relationships and plot-level wood density, which suggested the need for stratifying agroforestry fields to improve plot-level AGB modeling. We separated teak plantations from other agroforestry types and predicted AGB using mixed-effects models that can incorporate the variation of AGB-height relationship across agroforestry types. We found that, at the plot scale, mixed-effects models led to better model prediction performance (based on leave-one-out cross-validation) than the fixed-effects models, with the coefficient of determination (R-2) increasing from 0.38 to 0.64. At the landscape level, the difference between AGB densities from the two types of models was similar to 10% on average and up to similar to 30% at the pixel level. This study suggested the importance of stratification based on tree AGB allometry and the utility of mixed-effects models in modeling and mapping AGB of agroforestry systems.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Airborne Lidar Estimation of Aboveground Forest Biomass in the Absence of Field Inventory
    Ferraz, Antonio
    Saatchi, Sassan
    Mallet, Clement
    Jacquemoud, Stephane
    Goncalves, Gil
    Silva, Carlos Alberto
    Soares, Paula
    Tome, Margarida
    Pereira, Luisa
    [J]. REMOTE SENSING, 2016, 8 (08)
  • [42] Aboveground biomass estimation of an old-growth mangrove forest using airborne LiDAR in the Philippines
    Mandal, Mohammad Shamim Hasan
    Suwa, Rempei
    Rollon, Rene N.
    Albano, Giannina Marie G.
    Cruz, Green Ann A.
    Ono, Kenji
    Primavera-Tirol, Yasmin H.
    Blanco, Ariel C.
    Nadaoka, Kazuo
    [J]. ECOLOGICAL RESEARCH, 2024,
  • [43] Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon
    Longo, Marcos
    Keller, Michael
    dos-Santos, Maiza N.
    Leitold, Veronika
    Pinage, Ekena R.
    Baccini, Alessandro
    Saatchi, Sassan
    Nogueira, Euler M.
    Batistella, Mateus
    Morton, Douglas C.
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2016, 30 (11) : 1639 - 1660
  • [44] Inventory of forest biomass in Brazilian Amazon: a local approach using airborne P-band SAR data
    dos Santos, JR
    Araujo, LS
    Freitas, CC
    Sant'Anna, SJS
    Dutra, LV
    Mura, JC
    Gama, FF
    Hernaandez, P
    [J]. IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 786 - 788
  • [45] Aboveground Biomass Mapping in SemiArid Forests by Integrating Airborne LiDAR with Sentinel-1 and Sentinel-2 Time-Series Data
    Zhang, Linjing
    Yin, Xinran
    Wang, Yaru
    Chen, Jing
    [J]. REMOTE SENSING, 2024, 16 (17)
  • [46] POLARINIETRIC ALOS/PALSAR-2 DATA FOR RETRIEVING ABOVEGROUND BIOMASS OF SECONDARY FOREST IN THE BRAZILIAN AMAZON
    Godinho Cassol, Henrique Luis
    Aragao, Luiz E. de O. C.
    Moraes, Elisabete Caria
    de Brito Carreiras, Joao Manuel
    Shimabukuro, Yosio Edemir
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1773 - 1776
  • [47] FOREST BIODIVERSITY MAPPING USING AIRBORNE LIDAR AND HYPERSPECTRAL DATA
    Zeng Yuan
    Zhao Yujin
    Zhao Dan
    Wu Bingfang
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3561 - 3562
  • [48] Mapping Global Forest Aboveground Biomass with Spaceborne LiDAR, Optical Imagery, and Forest Inventory Data
    Hu, Tianyu
    Su, Yanjun
    Xue, Baolin
    Liu, Jin
    Zhao, Xiaoqian
    Fang, Jingyun
    Guo, Qinghua
    [J]. REMOTE SENSING, 2016, 8 (07)
  • [49] Mapping aboveground biomass and its prediction uncertainty using LiDAR and field data, accounting for tree-level allometric and LiDAR model errors
    Saarela, Svetlana
    Wastlund, Andre
    Holmstrom, Emma
    Mensah, Alex Appiah
    Holm, Soren
    Nilsson, Mats
    Fridman, Jonas
    Stahl, Goran
    [J]. FOREST ECOSYSTEMS, 2020, 7 (01)
  • [50] Mapping aboveground biomass and its prediction uncertainty using LiDAR and field data, accounting for tree-level allometric and LiDAR model errors
    Svetlana Saarela
    André W?stlund
    Emma Holmstr?m
    Alex Appiah Mensah
    S?ren Holm
    Mats Nilsson
    Jonas Fridman
    G?ran St?hl
    [J]. Forest Ecosystems, 2020, 7 (03) : 562 - 578