Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data

被引:22
|
作者
Chen, Qi [1 ,2 ]
Lu, Dengsheng [1 ,3 ]
Keller, Michael [4 ,5 ]
dos-Santos, Maiza Nara [4 ]
Bolfe, Edson Luis [4 ]
Feng, Yunyun [1 ]
Wang, Changwei [2 ]
机构
[1] Zhejiang A&F Univ, Sch Environm & Resource Sci, Key Lab Carbon Cycling Forest Ecosyst & Carbon Se, Lin An 311300, Peoples R China
[2] Univ Hawaii, Dept Geog, Honolulu, HI 96822 USA
[3] Michigan State Univ, Ctr Global Change & Earth Observat, E Lansing, MI 48823 USA
[4] Brazilian Agr Res Corp Embrapa, BR-13070115 Campinas, SP, Brazil
[5] USDA, Forest Serv, Int Inst Trop Forestry, San Juan, PR 00926 USA
关键词
agroforestry; aboveground biomass; lidar; mixed-effects models; allometry; wood density; LAND-COVER CLASSIFICATION; AFRICAN TROPICAL FOREST; CARBON SEQUESTRATION; BOREAL FOREST; UNCERTAINTY; SYSTEMS; VEGETATION; LANDSCAPE; STORAGE; VOLUME;
D O I
10.3390/rs8010021
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Agroforestry has large potential for carbon (C) sequestration while providing many economical, social, and ecological benefits via its diversified products. Airborne lidar is considered as the most accurate technology for mapping aboveground biomass (AGB) over landscape levels. However, little research in the past has been done to study AGB of agroforestry systems using airborne lidar data. Focusing on an agroforestry system in the Brazilian Amazon, this study first predicted plot-level AGB using fixed-effects regression models that assumed the regression coefficients to be constants. The model prediction errors were then analyzed from the perspectives of tree DBH (diameter at breast height)height relationships and plot-level wood density, which suggested the need for stratifying agroforestry fields to improve plot-level AGB modeling. We separated teak plantations from other agroforestry types and predicted AGB using mixed-effects models that can incorporate the variation of AGB-height relationship across agroforestry types. We found that, at the plot scale, mixed-effects models led to better model prediction performance (based on leave-one-out cross-validation) than the fixed-effects models, with the coefficient of determination (R-2) increasing from 0.38 to 0.64. At the landscape level, the difference between AGB densities from the two types of models was similar to 10% on average and up to similar to 30% at the pixel level. This study suggested the importance of stratification based on tree AGB allometry and the utility of mixed-effects models in modeling and mapping AGB of agroforestry systems.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] Modeling Forest Aboveground Biomass and Volume Using Airborne LiDAR Metrics and Forest Inventory and Analysis Data in the Pacific Northwest
    Sheridan, Ryan D.
    Popescu, Sorin C.
    Gatziolis, Demetrios
    Morgan, Cristine L. S.
    Ku, Nian-Wei
    [J]. REMOTE SENSING, 2015, 7 (01) : 229 - 255
  • [12] High-resolution mapping of aboveground shrub biomass in Arctic tundra using airborne lidar and imagery
    Greaves, Heather E.
    Vierling, Lee A.
    Eitel, Jan U. H.
    Boelman, Natalie T.
    Magney, Troy S.
    Prager, Case M.
    Griffin, Kevin L.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2016, 184 : 361 - 373
  • [13] Predicting aboveground biomass in Pinus taeda L. plantation using airborne LiDAR data
    Silva, Carlos Alberto
    Klauberg, Carine
    Klein Hentz, Angela Maria
    Chaves Carvalho, Samuel de Padua
    Dalla Corte, Ana Paula
    [J]. SCIENTIA FORESTALIS, 2017, 45 (115): : 527 - 539
  • [14] Assessment of anthropogenic disturbances on mangrove aboveground biomass in Malaysian Borneo using airborne LiDAR data
    Wong, Charissa J.
    Chai, Lee Ting
    James, Daniel
    Besar, Normah Awang
    Kamlun, Kamlisa Uni
    Phua, Mui-How
    [J]. EGYPTIAN JOURNAL OF REMOTE SENSING AND SPACE SCIENCES, 2024, 27 (03): : 547 - 554
  • [15] Regional aboveground forest biomass using airborne and spaceborne LiDAR in Quebec
    Boudreau, Jonathan
    Nelson, Ross F.
    Margolis, Hank A.
    Beaudoin, Andre
    Guindon, Luc
    Kimes, Daniel S.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2008, 112 (10) : 3876 - 3890
  • [16] Modeling aboveground tree woody biomass using national-scale allometric methods and airborne lidar
    Chen, Qi
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 106 : 95 - 106
  • [17] Evaluating spatial coverage of data on the aboveground biomass in undisturbed forests in the Brazilian Amazon
    Graciela Tejada
    Eric Bastos Görgens
    Fernando Del Bon Espírito-Santo
    Roberta Zecchini Cantinho
    Jean Pierre Ometto
    [J]. Carbon Balance and Management, 14
  • [18] Evaluating spatial coverage of data on the aboveground biomass in undisturbed forests in the Brazilian Amazon
    Tejada, Graciela
    Gorgens, Eric Bastos
    Espirito-Santo, Fernando Del Bon
    Cantinho, Roberta Zecchini
    Ometto, Jean Pierre
    [J]. CARBON BALANCE AND MANAGEMENT, 2019, 14 (01)
  • [19] Stratification-Based Forest Aboveground Biomass Estimation in a Subtropical Region Using Airborne Lidar Data
    Jiang, Xiandie
    Li, Guiying
    Lu, Dengsheng
    Chen, Erxue
    Wei, Xinliang
    [J]. REMOTE SENSING, 2020, 12 (07)
  • [20] Beyond trees: Mapping total aboveground biomass density in the Brazilian savanna using high-density UAV-lidar data
    Teixeira da Costa, Maira Beatriz
    Silva, Carlos Alberto
    Broadbent, Eben North
    Leite, Rodrigo Vieira
    Mohan, Midhun
    Liesenberg, Veraldo
    Stoddart, Jaz
    do Amaral, Cibele Hummel
    Alves de Almeida, Danilo Roberti
    da Silva, Anne Laura
    Goya, Lucas Ruggeri Re Y.
    Cordeiro, Victor Almeida
    Rex, Franciel
    Hirsch, Andre
    Marcatti, Gustavo Eduardo
    Cardil, Adrian
    Furtado de Mendonca, Bruno Araujo
    Hamamura, Caio
    Dalla Corte, Ana Paula
    Trondoli Matricardi, Eraldo Aparecido
    Hudak, Andrew T.
    Almeyda Zambrano, Angelica Maria
    Valbuena, Ruben
    de Faria, Bruno Lopes
    Silva Junior, Celso H. L.
    Aragao, Luiz
    Ferreira, Manuel Eduardo
    Liang, Jingjing
    Chaves e Carvalho, Samuel de Padua
    Klauberg, Carine
    [J]. FOREST ECOLOGY AND MANAGEMENT, 2021, 491