Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data

被引:22
|
作者
Chen, Qi [1 ,2 ]
Lu, Dengsheng [1 ,3 ]
Keller, Michael [4 ,5 ]
dos-Santos, Maiza Nara [4 ]
Bolfe, Edson Luis [4 ]
Feng, Yunyun [1 ]
Wang, Changwei [2 ]
机构
[1] Zhejiang A&F Univ, Sch Environm & Resource Sci, Key Lab Carbon Cycling Forest Ecosyst & Carbon Se, Lin An 311300, Peoples R China
[2] Univ Hawaii, Dept Geog, Honolulu, HI 96822 USA
[3] Michigan State Univ, Ctr Global Change & Earth Observat, E Lansing, MI 48823 USA
[4] Brazilian Agr Res Corp Embrapa, BR-13070115 Campinas, SP, Brazil
[5] USDA, Forest Serv, Int Inst Trop Forestry, San Juan, PR 00926 USA
关键词
agroforestry; aboveground biomass; lidar; mixed-effects models; allometry; wood density; LAND-COVER CLASSIFICATION; AFRICAN TROPICAL FOREST; CARBON SEQUESTRATION; BOREAL FOREST; UNCERTAINTY; SYSTEMS; VEGETATION; LANDSCAPE; STORAGE; VOLUME;
D O I
10.3390/rs8010021
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Agroforestry has large potential for carbon (C) sequestration while providing many economical, social, and ecological benefits via its diversified products. Airborne lidar is considered as the most accurate technology for mapping aboveground biomass (AGB) over landscape levels. However, little research in the past has been done to study AGB of agroforestry systems using airborne lidar data. Focusing on an agroforestry system in the Brazilian Amazon, this study first predicted plot-level AGB using fixed-effects regression models that assumed the regression coefficients to be constants. The model prediction errors were then analyzed from the perspectives of tree DBH (diameter at breast height)height relationships and plot-level wood density, which suggested the need for stratifying agroforestry fields to improve plot-level AGB modeling. We separated teak plantations from other agroforestry types and predicted AGB using mixed-effects models that can incorporate the variation of AGB-height relationship across agroforestry types. We found that, at the plot scale, mixed-effects models led to better model prediction performance (based on leave-one-out cross-validation) than the fixed-effects models, with the coefficient of determination (R-2) increasing from 0.38 to 0.64. At the landscape level, the difference between AGB densities from the two types of models was similar to 10% on average and up to similar to 30% at the pixel level. This study suggested the importance of stratification based on tree AGB allometry and the utility of mixed-effects models in modeling and mapping AGB of agroforestry systems.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian Amazon using different regression algorithms
    de Almeida, Catherine Torres
    Galvao, Lenio Soares
    de Oliveira Cruz e Aragao, Luiz Eduardo
    Henry Balbaud Ometto, Jean Pierre
    Jacon, Aline Daniele
    de Souza Pereira, Francisca Rocha
    Sato, Luciane Yumie
    Lopes, Aline Pontes
    Lima de Alencastro Graca, Paulo Mauricio
    Silva, Camila Valeria de Jesus
    Ferreira-Ferreira, Jefferson
    Longo, Marcos
    [J]. REMOTE SENSING OF ENVIRONMENT, 2019, 232
  • [2] Modeling Forest Aboveground Carbon Density in the Brazilian Amazon with Integration of MODIS and Airborne LiDAR Data
    Jiang, Xiandie
    Li, Guiying
    Lu, Dengsheng
    Moran, Emilio
    Batistella, Mateus
    [J]. REMOTE SENSING, 2020, 12 (20) : 1 - 25
  • [3] STATEWIDE MAPPING AND ESTIMATION OF VEGETATION ABOVEGROUND BIOMASS USING AIRBORNE LIDAR
    Chen, Qi
    McRoberts, Ronald
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 4442 - 4444
  • [4] Reducing Uncertainty in Mapping of Mangrove Aboveground Biomass Using Airborne Discrete Return Lidar Data
    de Souza Pereira, Francisca Rocha
    Kampel, Milton
    Gomes Soares, Mario Luiz
    Duque Estrada, Gustavo Calderucio
    Bentz, Cristina
    Vincent, Gregoire
    [J]. REMOTE SENSING, 2018, 10 (04):
  • [5] Multi-scale approach to estimating aboveground biomass in the Brazilian Amazon using Landsat and LiDAR data
    Dos Santos, Erone Ghizoni
    Shimabukuro, Yosio Edemir
    De Moura, Yhasmin Mendes
    Goncalves, Fabio Guimaraes
    Jorge, Anderson
    Gasparini, Kaio Alan
    Arai, Egidio
    Duarte, Valdete
    Ometto, Jean Pierre
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (22) : 8635 - 8645
  • [6] Mapping forest aboveground biomass using airborne hyperspectral and LiDAR data in the mountainous conditions of Central Europe
    Brovkina, Olga
    Novotny, Jan
    Cienciala, Emil
    Zemek, Frantisek
    Russ, Radek
    [J]. ECOLOGICAL ENGINEERING, 2017, 100 : 219 - 230
  • [7] Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon
    Lu, D
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (12) : 2509 - 2525
  • [8] ASSESSMENT OF THE MAPPING OF ABOVEGROUND BIOMASS AND ITS UNCERTAINTIES USING FIELD MEASUREMENTS, AIRBORNE LIDAR AND SATELLITE DATA IN MEXICO
    Urbazaev, Mikhail
    Thiel, Christian
    Cremer, Felix
    Schmullius, Christiane
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8793 - 8796
  • [9] MAPPING TOTAL ABOVEGROUND BIOMASS CHANGE IN THE BRAZILIAN CERRADO USING UAV-LIDAR
    Schlickmann, Monique Bohora
    Nogueira, Luiz Guilherme
    Leite, Rodrigo Vieira
    Rocha, Kleydson Diego
    Xia, Jinyi
    Souza, Danilo
    Broadbent, Eben North
    Saatchi, Sassan
    Klauberg, Carine
    Hudak, Andrew T.
    Karasinski, Mauro Alessandro
    Ferreira, Matheus
    Alves de Almeida, Danilo Roberti
    Silva, Carlos Alberto
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2743 - 2746
  • [10] Aboveground biomass estimates of sagebrush using terrestrial and airborne LiDAR data in a dryland ecosystem
    Li, Aihua
    Glenn, Nancy F.
    Olsoy, Peter J.
    Mitchell, Jessica J.
    Shrestha, Rupesh
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2015, 213 : 138 - 147