Stochastic resonance in two-dimensional Landau Ginzburg equation

被引:10
|
作者
Benzi, R
Sutera, A
机构
[1] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy
[2] Univ Roma Tor Vergata, INFM, I-00173 Rome, Italy
[3] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
来源
关键词
D O I
10.1088/0305-4470/37/32/L01
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the mechanism of stochastic resonance for the Landau Ginzburg equation in two space dimensions, perturbed by a white noise. We review how to renormalize the equation in order to avoid ultraviolet divergences. Next, we show that the renormalization amplifies the effect of the small periodic perturbation in the system. We argue that stochastic resonance can be used to highlight the effect of renormalization in a spatially extended system with multiple, stable statistical steady states.
引用
收藏
页码:L391 / L398
页数:8
相关论文
共 50 条
  • [41] Defect statistics in the two-dimensional complex Ginzburg-Landau model
    Mazenko, GF
    [J]. PHYSICAL REVIEW E, 2001, 64 (01): : 11 - 016110
  • [42] A stochastic Ginzburg-Landau equation with impulsive effects
    Nguyen Tien Dung
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (09) : 1962 - 1971
  • [43] Interface and vortex motion in the two-component complex dissipative Ginzburg-Landau equation in two-dimensional space
    Yabunaka, Shunsuke
    [J]. PHYSICAL REVIEW E, 2014, 90 (04):
  • [44] The attractor of the stochastic generalized Ginzburg-Landau equation
    BoLing Guo
    GuoLian Wang
    DongLong Li
    [J]. Science in China Series A: Mathematics, 2008, 51 : 955 - 964
  • [45] The attractor of the stochastic generalized Ginzburg-Landau equation
    Guo BoLing
    Wang GuoLian
    Li DongLong
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (05): : 955 - 964
  • [46] The attractor of the stochastic generalized Ginzburg-Landau equation
    GUO BoLing~1 WANG GuoLian~(2+) Li DongLong~3 1 Institute of Applied Physics and Computational Mathematics
    2 The Graduate School of China Academy of Engineering Physics
    3 Department of Information and Computer Science
    [J]. Science China Mathematics, 2008, (05) : 955 - 964
  • [47] Approximations of the solution of a stochastic Ginzburg-Landau equation
    Breckner, Brigitte E.
    Lisei, Hannelore
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (02): : 307 - 319
  • [48] Vortices in a stochastic parabolic Ginzburg-Landau equation
    Chugreeva, Olga
    Melcher, Christof
    [J]. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2017, 5 (01): : 113 - 143
  • [49] ANDERSON LOCALIZATION AND GINZBURG-LANDAU EQUATIONS IN TWO-DIMENSIONAL SUPERCONDUCTORS
    TAKAGI, H
    SOUDA, R
    KURODA, Y
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1982, 68 (02): : 426 - 438
  • [50] Vortices in a stochastic parabolic Ginzburg-Landau equation
    Olga Chugreeva
    Christof Melcher
    [J]. Stochastics and Partial Differential Equations: Analysis and Computations, 2017, 5 : 113 - 143