A Splitting Numerical Scheme for Non-linear Models of Mathematical Finance

被引:0
|
作者
Koleva, Miglena N. [1 ]
Vulkov, Lubin G. [1 ]
机构
[1] Univ Rousse, Fac Nat Sci & Educ, Rousse 7017, Bulgaria
关键词
MONGE-AMPERE EQUATION;
D O I
10.1007/978-3-662-43880-0_69
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present and analyze a splitting numerical scheme for two non-linear models of mathematical finance. Each of the problems is split into two parts: a hyperbolic equation solved numerically by using a flux limiter technique and a parabolic equation computed by implicit-explicit finite difference scheme. We show that the presented splitting numerical schemes are convergent and positivity preserving. Numerical results are also discussed.
引用
收藏
页码:602 / 610
页数:9
相关论文
共 50 条
  • [31] OPTIMAL NON-LINEAR MODELS
    Aldroubi, Akram
    Cabrelli, Carlos
    Molter, Ursula
    [J]. REVISTA DE LA UNION MATEMATICA ARGENTINA, 2009, 50 (02): : 217 - 225
  • [32] PARAMETRIZATIONS OF NON-LINEAR MODELS
    HOUGAARD, P
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1982, 44 (02): : 244 - 252
  • [33] Non-linear analysis of deformations of reinforced concrete elements by non-linear mathematical optimisation
    Raue, Erich
    Timmler, Hans-Georg
    [J]. 9TH INTERNATIONAL CONFERENCE: MODERN BUILDING MATERIALS, STRUCTURES AND TECHNIQUES, VOLS 1-3, 2008, : 1049 - 1053
  • [34] Structural identifiability for a class of non-linear compartmental systems using linear/non-linear splitting and symbolic computation
    Chapman, MJ
    Godfrey, KR
    Chappell, MJ
    Evans, ND
    [J]. MATHEMATICAL BIOSCIENCES, 2003, 183 (01) : 1 - 14
  • [35] Mathematical and numerical analysis of a class of non-linear elliptic equations in the two dimensional case
    Alaa, Nour Eddine
    Cheggour, Abderrahim
    Roche, Jean R.
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2006, : 926 - +
  • [36] Linear or non-linear models for percutaneous absorption?
    Moss, G. P.
    Sun, Y.
    Davey, N.
    Wilkinson, S. C.
    Brown, M. B.
    [J]. INTERNATIONAL JOURNAL OF COSMETIC SCIENCE, 2015, 37 (01) : 144 - 144
  • [37] TESTING LINEAR RESTRICTIONS ON NON-LINEAR MODELS
    SAWYER, KR
    ROSALSKY, MC
    [J]. ECONOMICS LETTERS, 1984, 15 (1-2) : 91 - 96
  • [38] Linear and non-linear models of brain interactions
    Büchel, C
    [J]. BIOLOGICAL PSYCHIATRY, 2000, 47 (08) : 64S - 64S
  • [40] Numerical modelling of non-linear electroelasticity
    Vu, D. K.
    Steinmann, P.
    Possart, G.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 70 (06) : 685 - 704