A Splitting Numerical Scheme for Non-linear Models of Mathematical Finance

被引:0
|
作者
Koleva, Miglena N. [1 ]
Vulkov, Lubin G. [1 ]
机构
[1] Univ Rousse, Fac Nat Sci & Educ, Rousse 7017, Bulgaria
关键词
MONGE-AMPERE EQUATION;
D O I
10.1007/978-3-662-43880-0_69
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present and analyze a splitting numerical scheme for two non-linear models of mathematical finance. Each of the problems is split into two parts: a hyperbolic equation solved numerically by using a flux limiter technique and a parabolic equation computed by implicit-explicit finite difference scheme. We show that the presented splitting numerical schemes are convergent and positivity preserving. Numerical results are also discussed.
引用
收藏
页码:602 / 610
页数:9
相关论文
共 50 条
  • [21] Atangana-Batogna numerical scheme applied on a linear and non-linear fractional differential equation
    Badr Saad T. Alkahtani
    [J]. The European Physical Journal Plus, 133
  • [22] APPLICATION OF NON-LINEAR TURBULENCE MODELS ON THE NUMERICAL SIMULATION OF CAVITATING FLOWS
    Chen, Ying
    Cao, Jiayi
    Chen, Xin
    Lu, Chuanjing
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2012, VOL 7, PTS A-D, 2013, : 2121 - 2128
  • [23] Non-linear mathematical, thermal models of gas turbine engines and their application in operation
    Santa, I.
    [J]. Congress of the International Council of the Aeronautical Sciences - ICAS Proceedings, 1990,
  • [24] Adaptive control of non-linear plants using soft computing and mathematical models
    Melin, P
    Castillo, O
    Valerio, F
    Ramirez, M
    [J]. IC-AI'2001: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS I-III, 2001, : 1192 - 1198
  • [25] NON-LINEAR MATHEMATICAL MODELS IN THE THEORY OF EXPERIMENTAL DESIGN: APPLICATION IN THE MANUFACTURING PROCESSES
    Lazarevic, Andela
    Lazarevic, Dragoljub
    [J]. FACTA UNIVERSITATIS-SERIES MECHANICAL ENGINEERING, 2015, 13 (02) : 181 - 191
  • [26] Homotopy perturbation approach for solving non-linear diffusion models in mathematical biology
    Agirseven, Deniz
    Ozis, Turgut
    [J]. PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, 2010, : 250 - 253
  • [27] MATHEMATICAL DERIVATION OF LINEAR AND NON-LINEAR RUNOFF KERNELS
    HINO, M
    NADAOKA, K
    [J]. WATER RESOURCES RESEARCH, 1979, 15 (04) : 918 - 928
  • [28] MATHEMATICAL-MODELS OF NON-LINEAR RESISTANCE 3-TERMINAL NETWORKS
    BASAN, SN
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1980, 23 (12): : 90 - 92
  • [29] Non-linear filtration model with splitting front
    Kuzmina, Liudmila I.
    Osipov, Yuri V.
    Pesterev, Artem R.
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2024, 167