Real Space Multigrid Method for Ballistic Carbon Nanotubes Field-Effect Transistor

被引:1
|
作者
Ha, Cheun Yuen [1 ]
Yeak, Su Hoe [1 ]
Tan, Michael Loong Peng [2 ]
机构
[1] Univ Teknol Malaysia, Dept Math Sci, Fac Sci, Skudai 81310, Johor, Malaysia
[2] Univ Teknol Malaysia, Dept Elect & Comp Engn, Fac Elect Engn, Skudai 81310, Johor, Malaysia
关键词
Carbon Nanotubes; Real Space Approach; Multigrid; Poisson Equation; Jacobian Matrix; POISSONS-EQUATION;
D O I
10.1166/jno.2018.2368
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper is focus on the development of a multigrid method, which is applied and its numerical simulation capability in carbon nanotube field-effect transistor (CNTFET). This research applied multigrid method in fixed size nanotube length, similar to 45 nm, and the transistor channel (13, 0) intrinsic carbon nanotubes (CNTs). In this research, we explored and compared the performance of CNTFET in simulation time with different size of grid points (101 x 101 until 701 x 701). This enables an efficient calculation of quantum transport properties, which relies on the Poisson equation matrices in real space approach. The comparison results show that the multigrid technique requires less computational time, by up to 54% without the Jacobian matrix and 4% with the Jacobian matrix.
引用
收藏
页码:1284 / 1289
页数:6
相关论文
共 50 条
  • [41] Optimization of Ballistic Carbon Nanotube Field-Effect Transistor Using Response Surface Methodology for Enhanced Current Ratio Performance
    Kouma, J. M. Nyangono
    Mbey, C. F.
    Libouga, I. O.
    Tchakounte, A.
    Boum, A. T.
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2025, 14 (03)
  • [42] Atomistic Simulation of a New Label-Free DNA Nanosensor Based on Ballistic Carbon Nanotube Field-Effect Transistor
    Tamersit, Khalil
    Djeffal, Faycal
    2019 IEEE INTERNATIONAL CONFERENCE ON DESIGN & TEST OF INTEGRATED MICRO & NANO-SYSTEMS (DTS), 2019,
  • [43] FREQUENCY-DOUBLING IN GAAS/ALGAAS FIELD-EFFECT TRANSISTOR USING REAL-SPACE TRANSFER
    KOSCICA, TE
    ZHAO, JH
    IEEE ELECTRON DEVICE LETTERS, 1995, 16 (12) : 545 - 547
  • [44] Ballistic field-effect transistor with negative-effective-mass current carriers in the channel
    Gribnikov, Z
    Vagidov, N
    Korshak, A
    Mitin, V
    SUPERLATTICES AND MICROSTRUCTURES, 2000, 27 (2-3) : 105 - 109
  • [45] Negative differential resistance in graphenebased ballistic field-effect transistor with oblique top gate
    Dragoman, Mircea
    Dinescu, Adrian
    Dragoman, Daniela
    NANOTECHNOLOGY, 2014, 25 (41)
  • [46] Evidence of a fully ballistic one-dimensional field-effect transistor: Experiment and simulation
    Gremion, E.
    Niepce, D.
    Cavanna, A.
    Gennser, U.
    Jin, Y.
    APPLIED PHYSICS LETTERS, 2010, 97 (23)
  • [47] Carbon nanomaterials: controlled growth and field-effect transistor biosensors
    Xiao-Na Wang
    Ping-An Hu
    Frontiers of Materials Science, 2012, 6 : 26 - 46
  • [48] DNA-templated carbon nanotube field-effect transistor
    Keren, K
    Berman, RS
    Buchstab, E
    Sivan, U
    Braun, E
    SCIENCE, 2003, 302 (5649) : 1380 - 1382
  • [49] Nanomanipulation of a Single Carbon Nanotube for the Fabrication of a Field-effect Transistor
    Yu, Ning
    Shi, Qing
    Nakajima, Masahiro
    Wang, Huaping
    Yang, Zhan
    Huang, Qiang
    Fukuda, Toshio
    2017 IEEE 17TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2017, : 818 - 821
  • [50] Fabrication and Characterization of Carbon Nanotube Field-Effect Transistor Biosensors
    Leyden, Matthew R.
    Schuman, Canan
    Sharf, Tal
    Kevek, Josh
    Remcho, Vincent T.
    Minot, Ethan D.
    ORGANIC SEMICONDUCTORS IN SENSORS AND BIOELECTRONICS III, 2010, 7779