Real Space Multigrid Method for Ballistic Carbon Nanotubes Field-Effect Transistor

被引:1
|
作者
Ha, Cheun Yuen [1 ]
Yeak, Su Hoe [1 ]
Tan, Michael Loong Peng [2 ]
机构
[1] Univ Teknol Malaysia, Dept Math Sci, Fac Sci, Skudai 81310, Johor, Malaysia
[2] Univ Teknol Malaysia, Dept Elect & Comp Engn, Fac Elect Engn, Skudai 81310, Johor, Malaysia
关键词
Carbon Nanotubes; Real Space Approach; Multigrid; Poisson Equation; Jacobian Matrix; POISSONS-EQUATION;
D O I
10.1166/jno.2018.2368
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper is focus on the development of a multigrid method, which is applied and its numerical simulation capability in carbon nanotube field-effect transistor (CNTFET). This research applied multigrid method in fixed size nanotube length, similar to 45 nm, and the transistor channel (13, 0) intrinsic carbon nanotubes (CNTs). In this research, we explored and compared the performance of CNTFET in simulation time with different size of grid points (101 x 101 until 701 x 701). This enables an efficient calculation of quantum transport properties, which relies on the Poisson equation matrices in real space approach. The comparison results show that the multigrid technique requires less computational time, by up to 54% without the Jacobian matrix and 4% with the Jacobian matrix.
引用
收藏
页码:1284 / 1289
页数:6
相关论文
共 50 条
  • [31] Device performance of silicene nanoribbon field-effect transistor under ballistic transport
    Chuan, Mu Wen
    Wong, Kien Liong
    Hamzah, Afiq
    Rusli, Shahrizal
    Alias, Nurul Ezaila
    Lim, Cheng Siong
    Tan, Michael Loong Peng
    2020 IEEE INTERNATIONAL CONFERENCE ON SEMICONDUCTOR ELECTRONICS (ICSE 2020), 2020, : 5 - 8
  • [32] Negative-effective-mass ballistic field-effect transistor: Theory and modeling
    Gribnikov, ZS
    Vagidov, NZ
    Korshak, AN
    Mitin, VV
    JOURNAL OF APPLIED PHYSICS, 2000, 87 (10) : 7466 - 7475
  • [33] Gate dielectric material dependence of current-voltage characteristics of ballistic Schottky barrier graphene nanoribbon field-effect transistor and carbon nanotube field-effect transistor for different channel lengths
    Ahmed, Sheikh
    Shawkat, Mashiyat
    Chowdhury, Md. Iramul
    Mominuzzaman, Sharif
    Micro & Nano Letters, 2015, 10 (10): : 523 - 527
  • [34] Fabrication of field effect transistor based on carbon nanotubes
    Repetto, P
    Dussoni, S
    Gatti, F
    Pergolesi, D
    Gastaldo, L
    Valle, R
    Gomes, MR
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 520 (1-3): : 599 - 601
  • [35] Numerical Simulation of Ballistic Carbon Nanotube Field-Effect Transistors
    Yaghuti, M.
    Saghafi, K.
    2008 2ND IEEE INTERNATIONAL NANOELECTRONICS CONFERENCE, VOLS 1-3, 2008, : 686 - 688
  • [36] Performance projections for ballistic carbon nanotube field-effect transistors
    Guo, J
    Lundstrom, M
    Datta, S
    APPLIED PHYSICS LETTERS, 2002, 80 (17) : 3192 - 3194
  • [37] Hysteresis modeling in ballistic carbon nanotube field-effect transistors
    Liu, Yian
    Moura, Mateus S.
    Costa, Ademir J.
    de Almeida, Luiz Alberto L.
    Paranjape, Makarand
    Fontana, Marcio
    NANOTECHNOLOGY SCIENCE AND APPLICATIONS, 2014, 7 : 55 - 61
  • [38] Enhancement of organic field-effect transistor performance by incorporating functionalized double-walled carbon nanotubes
    Chu, Yingli
    Wu, Xiaohan
    Du, Juan
    Huang, Jia
    RSC ADVANCES, 2017, 7 (49) : 30626 - 30631
  • [39] A Carbon Nanotube Field-Effect Transistor with a Cantilevered Carbon Nanotube Gate
    Matsunaga, Naoyuki
    Arie, Takayuki
    Akita, Seiji
    APPLIED PHYSICS EXPRESS, 2012, 5 (06)
  • [40] Carbon nanotube field-effect transistor with a carbon nanotube gate electrode
    Park, Ji-Yong
    NANOTECHNOLOGY, 2007, 18 (09)