Quantum critical behavior of the quantum Ising model on fractal lattices

被引:8
|
作者
Yi, Hangmo [1 ,2 ]
机构
[1] Soongsil Univ, Dept Phys, Seoul 156743, South Korea
[2] Soongsil Univ, Inst Integrat Basic Sci, Seoul 156743, South Korea
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 01期
基金
新加坡国家研究基金会;
关键词
SIZE-SCALING-ANALYSIS; CRITICAL EXPONENTS; PERCOLATION; SYSTEMS;
D O I
10.1103/PhysRevE.91.012118
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
I study the properties of the quantum critical point of the transverse-field quantum Ising model on various fractal lattices such as the Sierpinski carpet, Sierpinski gasket, and Sierpinski tetrahedron. Using a continuous-time quantum Monte Carlo simulation method and finite-size scaling analysis, I identify the quantum critical point and investigate its scaling properties. Among others, I calculate the dynamic critical exponent and find that it is greater than one for all three structures. The fact that it deviates from one is a direct consequence of the fractal structures not being integer-dimensional regular lattices. Other critical exponents are also calculated. The exponents are different from those of the classical critical point and satisfy the quantum scaling relation, thus confirming that I have indeed found the quantum critical point. I find that the Sierpinski tetrahedron, of which the dimension is exactly 2, belongs to a different universality class than that of the two-dimensional square lattice. I conclude that the critical exponents depend on more details of the structure than just the dimension and the symmetry.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Entanglement in the Quantum Ising Model
    Geoffrey R. Grimmett
    Tobias J. Osborne
    Petra F. Scudo
    Journal of Statistical Physics, 2008, 131 : 305 - 339
  • [42] Interference in the Quantum Ising Model
    徐酉阳
    粟多武
    CommunicationsinTheoreticalPhysics, 2014, 61 (01) : 51 - 55
  • [43] Critical behavior of Gaussian model on X fractal lattices in external magnetic fields
    Li, Y
    Kong, XM
    Huang, JY
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2003, 39 (03) : 337 - 340
  • [44] A quantum Monte Carlo method for quantum Ising model
    Zhang, Q
    Gu, YW
    Wei, GZ
    PROCEEDINGS OF THE THIRD INTERNATIONAL SYMPOSIUM ON MAGNETIC INDUSTRY (ISMI'04) & FIRST INTERNATIONAL SYMPOSIUM ON PHYSICS AND IT INDUSTRY (ISITI'04), 2005, : 40 - 42
  • [45] Quantum critical dynamics in the two-dimensional transverse Ising model
    Hotta, Chisa
    Yoshida, Tempei
    Harada, Kenji
    PHYSICAL REVIEW RESEARCH, 2023, 5 (01):
  • [46] Critical Value of the Quantum Ising Model on Star-Like Graphs
    Bjoernberg, Jakob E.
    JOURNAL OF STATISTICAL PHYSICS, 2009, 135 (03) : 571 - 583
  • [47] Critical Value of the Quantum Ising Model on Star-Like Graphs
    Jakob E. Björnberg
    Journal of Statistical Physics, 2009, 135 : 571 - 583
  • [48] ON THE CRITICAL-BEHAVIOR OF QUANTUM ISING-LIKE METAMAGNETS IN TRANSVERSE FIELDS
    LUKIERSKAWALASEK, K
    PHYSICS LETTERS A, 1992, 171 (5-6) : 423 - 426
  • [49] ISING SPIN DYNAMICS ON FRACTAL LATTICES
    KUTASOV, D
    DOMANY, E
    PYTTE, E
    PHYSICAL REVIEW B, 1987, 35 (07): : 3354 - 3358
  • [50] ISING SPIN DYNAMICS ON FRACTAL LATTICES
    DOMANY, E
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1987, 56 (06): : 873 - 874