Quantum critical behavior of the quantum Ising model on fractal lattices

被引:8
|
作者
Yi, Hangmo [1 ,2 ]
机构
[1] Soongsil Univ, Dept Phys, Seoul 156743, South Korea
[2] Soongsil Univ, Inst Integrat Basic Sci, Seoul 156743, South Korea
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 01期
基金
新加坡国家研究基金会;
关键词
SIZE-SCALING-ANALYSIS; CRITICAL EXPONENTS; PERCOLATION; SYSTEMS;
D O I
10.1103/PhysRevE.91.012118
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
I study the properties of the quantum critical point of the transverse-field quantum Ising model on various fractal lattices such as the Sierpinski carpet, Sierpinski gasket, and Sierpinski tetrahedron. Using a continuous-time quantum Monte Carlo simulation method and finite-size scaling analysis, I identify the quantum critical point and investigate its scaling properties. Among others, I calculate the dynamic critical exponent and find that it is greater than one for all three structures. The fact that it deviates from one is a direct consequence of the fractal structures not being integer-dimensional regular lattices. Other critical exponents are also calculated. The exponents are different from those of the classical critical point and satisfy the quantum scaling relation, thus confirming that I have indeed found the quantum critical point. I find that the Sierpinski tetrahedron, of which the dimension is exactly 2, belongs to a different universality class than that of the two-dimensional square lattice. I conclude that the critical exponents depend on more details of the structure than just the dimension and the symmetry.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Critical behavior of the Gaussian model on fractal lattices in external magnetic field
    孔祥木
    林振权
    朱建阳
    ScienceinChina,SerA., 2000, Ser.A.2000 (07) : 767 - 779
  • [22] Critical behavior of the Gaussian model on fractal lattices in external magnetic field
    Kong, XM
    Lin, ZQ
    Zhu, JY
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2000, 43 (07): : 767 - 779
  • [23] Critical behavior of the Gaussian model on fractal lattices in external magnetic field
    孔祥木
    林振权
    朱建阳
    Science China Mathematics, 2000, (07) : 767 - 779
  • [24] Variational quantum simulation of the critical Ising model with symmetry averaging
    Sewell, Troy J.
    Bao, Ning
    Jordan, Stephen P.
    PHYSICAL REVIEW A, 2023, 107 (04)
  • [25] Measurement Based Quantum Computation on Fractal Lattices
    Markham, Damian
    Anders, Janet
    Hajdusek, Michal
    Vedral, Vlatko
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2010, (26): : 109 - 115
  • [26] Quantum transport and microwave scattering on fractal lattices
    Subramaniam, Krishnasamy
    Zschornak, Matthias
    Gemming, Sibylle
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE-CRYSTALLINE MATERIALS, 2022, 237 (4-5): : 179 - 190
  • [27] Quantum Transport in Fractal Lattices with Coulomb Interaction
    Konobeeva, N. N.
    Trofimov, R. R.
    Belonenko, M. B.
    SEMICONDUCTORS, 2024, 58 (02) : 141 - 144
  • [28] Quantum simulation of scattering in the quantum Ising model
    Gustafson, Erik
    Meurice, Y.
    Unmuth-Yockey, Judah
    PHYSICAL REVIEW D, 2019, 99 (09)
  • [29] Scaling of entanglement during the quantum phase transition for Ising spin systems on triangular and Sierpinski fractal lattices
    Xu, Yu-Liang
    Kong, Xiang-Mu
    Liu, Zhong-Qiang
    Yin, Chuan-Cun
    PHYSICAL REVIEW A, 2017, 95 (04)
  • [30] SURFACE MAGNETIZATION AND CRITICAL-BEHAVIOR OF A HIERARCHICAL QUANTUM ISING CHAIN
    LIN, ZF
    GODA, M
    PHYSICAL REVIEW B, 1995, 51 (09): : 6093 - 6095