Quantum critical behavior of the quantum Ising model on fractal lattices

被引:8
|
作者
Yi, Hangmo [1 ,2 ]
机构
[1] Soongsil Univ, Dept Phys, Seoul 156743, South Korea
[2] Soongsil Univ, Inst Integrat Basic Sci, Seoul 156743, South Korea
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 01期
基金
新加坡国家研究基金会;
关键词
SIZE-SCALING-ANALYSIS; CRITICAL EXPONENTS; PERCOLATION; SYSTEMS;
D O I
10.1103/PhysRevE.91.012118
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
I study the properties of the quantum critical point of the transverse-field quantum Ising model on various fractal lattices such as the Sierpinski carpet, Sierpinski gasket, and Sierpinski tetrahedron. Using a continuous-time quantum Monte Carlo simulation method and finite-size scaling analysis, I identify the quantum critical point and investigate its scaling properties. Among others, I calculate the dynamic critical exponent and find that it is greater than one for all three structures. The fact that it deviates from one is a direct consequence of the fractal structures not being integer-dimensional regular lattices. Other critical exponents are also calculated. The exponents are different from those of the classical critical point and satisfy the quantum scaling relation, thus confirming that I have indeed found the quantum critical point. I find that the Sierpinski tetrahedron, of which the dimension is exactly 2, belongs to a different universality class than that of the two-dimensional square lattice. I conclude that the critical exponents depend on more details of the structure than just the dimension and the symmetry.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Critical behavior of the quantum Ising model on a fractal structure
    Yi, Hangmo
    PHYSICAL REVIEW E, 2013, 88 (01):
  • [2] Feshbach Resonance in Optical Lattices and the Quantum Ising Model
    Bhaseen, M. J.
    Silver, A. O.
    Hohenadler, M.
    Simons, B. D.
    PHYSICAL REVIEW LETTERS, 2009, 103 (26)
  • [3] Critical behavior of the Ising model by preparing the thermal state on a quantum computer
    Wang, Xiaoyang
    Feng, Xu
    Hartung, Tobias
    Jansen, Karl
    Stornati, Paolo
    PHYSICAL REVIEW A, 2023, 108 (02)
  • [4] Magnetic critical behavior of the Ising model on fractal structures
    Monceau, P
    Perreau, M
    Hebert, F
    PHYSICAL REVIEW B, 1998, 58 (10): : 6386 - 6393
  • [5] Vanishing Critical Magnetization in the Quantum Ising Model
    Jakob E. Björnberg
    Communications in Mathematical Physics, 2015, 337 : 879 - 907
  • [6] Vanishing Critical Magnetization in the Quantum Ising Model
    Bjornberg, Jakob E.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 337 (02) : 879 - 907
  • [7] Critical behavior of the Gaussian model on X fractal lattices
    Li, Ying
    Kong, Xiang-Mu
    Huang, Jia-Yin
    Wuli Xuebao/Acta Physica Sinica, 2002, 51 (06):
  • [8] Critical behavior of the Gaussian model on X fractal lattices
    Li, Y
    Kong, XM
    Huang, JY
    ACTA PHYSICA SINICA, 2002, 51 (06) : 1346 - 1349
  • [9] QUANTUM CLASSICAL CROSSOVER CRITICAL BEHAVIOR OF ISING-MODEL IN A TRANSVERSE FIELD
    PFEUTY, P
    PHYSICA B & C, 1977, 86 (JAN-M): : 579 - 580
  • [10] DILUTE ISING-MODEL ON FRACTAL LATTICES
    BOCCARA, N
    HAVLIN, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (10): : L547 - L549