Topological solitons in Frenkel-Kontorova chains

被引:1
|
作者
Abronin, I. A. [1 ]
Kuznetsova, N. M. [1 ]
Mikheikin, I. D. [1 ]
Sakun, V. P. [2 ]
机构
[1] Moscow State Univ Mech Engn MAMI, Moscow 107023, Russia
[2] Russian Acad Sci, Semenov Inst Chem Phys, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
Frenkel-Kontorova model; topological soliton; Peierls-Navarro potential; highly excited soliton dynamics; generalized Langevin equation; DYNAMICS; FRICTION; DEFECTS; MODEL;
D O I
10.1134/S1990793116020159
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
The properties of topological defects representing local regions of contraction and extension in the Frenkel-Kontorova chains are described. These defects exhibit the properties of quasi-particles-solitons that possess certain effective masses and are capable of moving in the Peierls-Navarro potential field having the same period as that of the substrate on which the chain is situated. The energy characteristics related to soliton motion in the chain are discussed. The dynamics of highly excited solitons that can appear either during topological defect formation or as a result of thermal fluctuation is considered. The decay of such an excitation resulting in soliton thermalization under the action of a fluctuating field generated by atomic vibrations in the chain and substrate is described in terms of the generalized Langevin equation. It is shown that soliton motion can be described using a statistically averaged equation until the moment when the soliton attains the state of thermodynamic equilibrium or is captured in one of the Peierls-Navarro potential wells, after which the motion of soliton in the chain acquires a hopping (activation) character. Analytical expression describing the curve of soliton excitation decay is obtained.
引用
收藏
页码:203 / 210
页数:8
相关论文
共 50 条
  • [41] Unorthodox analysis of the Frenkel-Kontorova model
    Universitaet Oldenburg, Oldenburg, Germany
    Phys A Stat Theor Phys, 1-2 (266-284):
  • [42] FRENKEL-KONTOROVA MODEL WITH TODA INTERACTIONS
    LIN, B
    HU, B
    JOURNAL OF STATISTICAL PHYSICS, 1992, 69 (5-6) : 1047 - 1068
  • [43] Frenkel-Kontorova model with pinning cusps
    Kao, HC
    Lee, SC
    Tzeng, WJ
    PHYSICA D, 1997, 107 (01): : 30 - 42
  • [44] A model for a driven Frenkel-Kontorova chain
    Quapp, Wolfgang
    Bofill, Josep Maria
    EUROPEAN PHYSICAL JOURNAL B, 2019, 92 (05):
  • [45] Travelling waves for a Frenkel-Kontorova chain
    Buffoni, Boris
    Schwetlick, Hartmut
    Zimmer, Johannes
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (04) : 2317 - 2342
  • [46] Farey fractions and the Frenkel-Kontorova model
    Kao, HC
    Lee, SC
    Tzeng, WJ
    PHYSICAL REVIEW E, 1997, 55 (03): : 2628 - 2631
  • [47] GLOBAL UNIVERSALITY IN THE FRENKEL-KONTOROVA MODEL
    BIHAM, O
    MUKAMEL, D
    PHYSICAL REVIEW A, 1989, 39 (10): : 5326 - 5335
  • [48] The ground state of the Frenkel-Kontorova model
    Babushkin, A. Yu.
    Abkaryan, A. K.
    Dobronets, B. S.
    Krasikov, V. S.
    Filonov, A. N.
    PHYSICS OF THE SOLID STATE, 2016, 58 (09) : 1834 - 1845
  • [49] SOLUTION TO FRENKEL-KONTOROVA DISLOCATION MODEL
    HOBART, R
    CELLI, V
    JOURNAL OF APPLIED PHYSICS, 1962, 33 (01) : 60 - &
  • [50] Synchronization in the Frenkel-Kontorova type system
    Yang, Yang
    Wang, Cang-Long
    Jiang, Hong
    Chen, Jian-Min
    Duan, Wen-Shan
    PHYSICA SCRIPTA, 2012, 86 (01)