Topological solitons in Frenkel-Kontorova chains

被引:1
|
作者
Abronin, I. A. [1 ]
Kuznetsova, N. M. [1 ]
Mikheikin, I. D. [1 ]
Sakun, V. P. [2 ]
机构
[1] Moscow State Univ Mech Engn MAMI, Moscow 107023, Russia
[2] Russian Acad Sci, Semenov Inst Chem Phys, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
Frenkel-Kontorova model; topological soliton; Peierls-Navarro potential; highly excited soliton dynamics; generalized Langevin equation; DYNAMICS; FRICTION; DEFECTS; MODEL;
D O I
10.1134/S1990793116020159
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
The properties of topological defects representing local regions of contraction and extension in the Frenkel-Kontorova chains are described. These defects exhibit the properties of quasi-particles-solitons that possess certain effective masses and are capable of moving in the Peierls-Navarro potential field having the same period as that of the substrate on which the chain is situated. The energy characteristics related to soliton motion in the chain are discussed. The dynamics of highly excited solitons that can appear either during topological defect formation or as a result of thermal fluctuation is considered. The decay of such an excitation resulting in soliton thermalization under the action of a fluctuating field generated by atomic vibrations in the chain and substrate is described in terms of the generalized Langevin equation. It is shown that soliton motion can be described using a statistically averaged equation until the moment when the soliton attains the state of thermodynamic equilibrium or is captured in one of the Peierls-Navarro potential wells, after which the motion of soliton in the chain acquires a hopping (activation) character. Analytical expression describing the curve of soliton excitation decay is obtained.
引用
收藏
页码:203 / 210
页数:8
相关论文
共 50 条
  • [31] Interface-facilitated energy transport in coupled Frenkel-Kontorova chains
    RuiXia Su
    ZongQiang Yuan
    Jun Wang
    ZhiGang Zheng
    Frontiers of Physics, 2016, 11 (02) : 119 - 124
  • [32] Sliding dynamics of the Frenkel-Kontorova model
    Strunz, T
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1995, 50 (12): : 1108 - 1112
  • [33] QUANTUM EFFECTS IN THE FRENKEL-KONTOROVA MODEL
    BORGONOVI, F
    GUARNERI, I
    SHEPELYANSKY, DL
    PHYSICAL REVIEW LETTERS, 1989, 63 (19) : 2010 - 2012
  • [34] FRENKEL-KONTOROVA MODEL WITH ANHARMONIC INTERACTIONS
    MILCHEV, A
    MAZZUCCHELLI, GM
    PHYSICAL REVIEW B, 1988, 38 (04): : 2808 - 2812
  • [35] Effect of Cherenkov radiation on the jitter of solitons in the driven underdamped Frenkel-Kontorova model
    Soloviev, I. I.
    Klenov, N. V.
    Pankratov, A. L.
    Il'ichev, E.
    Kuzmin, L. S.
    PHYSICAL REVIEW E, 2013, 87 (06)
  • [36] CROWDIONS USING THE FRENKEL-KONTOROVA MODEL
    KOEHLER, J
    PHYSICAL REVIEW B, 1978, 18 (10): : 5333 - 5339
  • [37] DISCRETENESS EFFECTS IN THE FRENKEL-KONTOROVA SYSTEM
    MUNAKATA, T
    ISHIMORI, Y
    PHYSICA B & C, 1979, 98 (1-2): : 68 - 73
  • [38] Driven kink in the Frenkel-Kontorova model
    Braun, OM
    Hu, BB
    Zeltser, A
    PHYSICAL REVIEW E, 2000, 62 (03): : 4235 - 4245
  • [39] Dissipative dynamics of the Frenkel-Kontorova model
    Floria, LM
    Mazo, JJ
    ADVANCES IN PHYSICS, 1996, 45 (06) : 505 - 598
  • [40] FRENKEL-KONTOROVA MODEL WITH ANHARMONIC INTERACTIONS
    MILCHEV, A
    PHYSICAL REVIEW B, 1986, 33 (03): : 2062 - 2065