Topological solitons in Frenkel-Kontorova chains

被引:1
|
作者
Abronin, I. A. [1 ]
Kuznetsova, N. M. [1 ]
Mikheikin, I. D. [1 ]
Sakun, V. P. [2 ]
机构
[1] Moscow State Univ Mech Engn MAMI, Moscow 107023, Russia
[2] Russian Acad Sci, Semenov Inst Chem Phys, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
Frenkel-Kontorova model; topological soliton; Peierls-Navarro potential; highly excited soliton dynamics; generalized Langevin equation; DYNAMICS; FRICTION; DEFECTS; MODEL;
D O I
10.1134/S1990793116020159
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
The properties of topological defects representing local regions of contraction and extension in the Frenkel-Kontorova chains are described. These defects exhibit the properties of quasi-particles-solitons that possess certain effective masses and are capable of moving in the Peierls-Navarro potential field having the same period as that of the substrate on which the chain is situated. The energy characteristics related to soliton motion in the chain are discussed. The dynamics of highly excited solitons that can appear either during topological defect formation or as a result of thermal fluctuation is considered. The decay of such an excitation resulting in soliton thermalization under the action of a fluctuating field generated by atomic vibrations in the chain and substrate is described in terms of the generalized Langevin equation. It is shown that soliton motion can be described using a statistically averaged equation until the moment when the soliton attains the state of thermodynamic equilibrium or is captured in one of the Peierls-Navarro potential wells, after which the motion of soliton in the chain acquires a hopping (activation) character. Analytical expression describing the curve of soliton excitation decay is obtained.
引用
收藏
页码:203 / 210
页数:8
相关论文
共 50 条
  • [1] Topological solitons in Frenkel—Kontorova chains
    I. A. Abronin
    N. M. Kuznetsova
    I. D. Mikheikin
    V. P. Sakun
    Russian Journal of Physical Chemistry B, 2016, 10 : 203 - 210
  • [2] Collective topological dynamics in the Frenkel-Kontorova chains
    Zheng, ZG
    Hu, BB
    PHYSICAL REVIEW E, 2000, 62 (03) : 4294 - 4299
  • [3] Entanglement of solitons in the Frenkel-Kontorova model
    Marcovitch, S.
    Reznik, B.
    PHYSICAL REVIEW A, 2008, 78 (05):
  • [4] PROPERTIES OF SOLITONS IN THE FRENKEL-KONTOROVA MODEL
    JOOS, B
    SOLID STATE COMMUNICATIONS, 1982, 42 (10) : 709 - 713
  • [5] Controlling chaotic solitons in Frenkel-Kontorova chains by disordered driving forces
    Chacon, Ricardo
    Martinez, Pedro J.
    PHYSICAL REVIEW LETTERS, 2007, 98 (22)
  • [6] SOLITONS IN AN ANHARMONIC CHAIN OF THE FRENKEL-KONTOROVA MODEL
    BEKLEMISHEV, SA
    KLOCHIKHIN, VL
    JETP LETTERS, 1994, 60 (02) : 106 - 110
  • [7] DYNAMICS OF UNHARMONIC CHAINS IN FRENKEL-KONTOROVA MODELS
    BEKLEMISHEV, SA
    KLOCHIKHIN, VL
    FIZIKA TVERDOGO TELA, 1995, 37 (01): : 150 - 159
  • [8] SYMMETRY PROPERTIES OF FINITE FRENKEL-KONTOROVA CHAINS
    BRAIMAN, Y
    BAUMGARTEN, J
    KLAFTER, J
    PHYSICAL REVIEW B, 1993, 47 (17): : 11159 - 11166
  • [9] Diffusion relaxation of solitons in finite Frenkel-Kontorova systems
    Mikheikin, I. D.
    Sakun, V. P.
    Kuznetsov, M. Yu.
    Makhonina, E. V.
    Pervov, V. S.
    JOURNAL OF MATERIALS SCIENCE, 2007, 42 (04) : 1122 - 1126
  • [10] The Frenkel-Kontorova Model
    Floría, LM
    Baesens, C
    Gómez-Gardeñes, J
    DYNAMICS OF COUPLED MAP LATTICES AND OF RELATED SPATIALLY EXTENDED SYSTEMS, 2005, 671 : 209 - 240