A Python']Python surrogate modeling framework with derivatives

被引:182
|
作者
Bouhlel, Mohamed Amine [1 ]
Hwang, John T. [2 ]
Bartoli, Nathalie [3 ]
Lafage, Remi [3 ]
Morlier, Joseph [4 ]
Martins, Joaquim R. R. A. [1 ]
机构
[1] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
[2] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
[3] Univ Toulouse, ONERA DTIS, Toulouse, France
[4] Univ Toulouse, ISAE SUPAERO, CNRS, ICA,INSA,MINES ALBI,UPS, Toulouse, France
关键词
Surrogate modeling; Gradient-enhanced surrogate modeling; Derivatives; MULTIDISCIPLINARY DESIGN; OPTIMIZATION;
D O I
10.1016/j.advengsoft.2019.03.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The surrogate modeling toolbox (SMT) is an open-source Python package that contains a collection of surrogate modeling methods, sampling techniques, and benchmarking functions. This package provides a library of surrogate models that is simple to use and facilitates the implementation of additional methods. SMT is different from existing surrogate modeling libraries because of its emphasis on derivatives, including training derivatives used for gradient-enhanced modeling, prediction derivatives, and derivatives with respect to training data. It also includes unique surrogate models: kriging by partial least-squares reduction, which scales well with the number of inputs; and energy-minimizing spline interpolation, which scales well with the number of training points. The efficiency and effectiveness of SMT are demonstrated through a series of examples. SMT is documented using custom tools for embedding automatically tested code and dynamically generated plots to produce high-quality user guides with minimal effort from contributors. SMT is maintained in a public version control repository.(1)
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [41] pomegranate: Fast and Flexible Probabilistic Modeling in Python']Python
    Schreiber, Jacob
    JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 18
  • [42] Python']Python toolkit for DNA geometry analysis and modeling
    Armeev, G. A.
    Sukhanova, I. A.
    Shaytan, A. K.
    FEBS OPEN BIO, 2019, 9 : 150 - 150
  • [43] Modeling of Graphs with Different Types of Reachability in Python']Python
    Antonova, V. M.
    Zakhir, B. M.
    Kuznetsov, N. A.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2019, 64 (12) : 1464 - 1472
  • [44] semopy: A Python']Python Package for Structural Equation Modeling
    Igolkina, Anna A.
    Meshcheryakov, Georgy
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2020, 27 (06) : 952 - 963
  • [45] AN INTRODUCTION TO MODELING AND SIMULATION WITH (PYTHON']PYTHON(P))DEVS
    Van Tendeloo, Yentl
    Vangheluwe, Hans
    Franceschini, Romain
    2019 WINTER SIMULATION CONFERENCE (WSC), 2019, : 1415 - 1429
  • [46] SeReMpy: Seismic reservoir modeling Python']Python library
    Grana, Dario
    de Figueiredo, Leandro
    GEOPHYSICS, 2021, 86 (06) : F61 - F69
  • [47] Pyomo: modeling and solving mathematical programs in Python']Python
    Hart, William E.
    Watson, Jean-Paul
    Woodruff, David L.
    MATHEMATICAL PROGRAMMING COMPUTATION, 2011, 3 (03) : 219 - 260
  • [48] pyEIT: A python']python based framework for Electrical Impedance Tomography
    Liu, Benyuan
    Yang, Bin
    Xu, Canhua
    Xia, Junying
    Dai, Meng
    Ji, Zhenyu
    You, Fusheng
    Dong, Xiuzhen
    Shi, Xuetao
    Fu, Feng
    SOFTWAREX, 2018, 7 : 304 - 308
  • [49] AstroSA: An astronomical observation scheduler assessment framework in python']python
    Xie, H.
    Kang, Z.
    Jiang, X.
    ASTRONOMY AND COMPUTING, 2024, 47
  • [50] Bioptim, a Python']Python Framework for Musculoskeletal Optimal Control in Biomechanics
    Michaud, Benjamin
    Bailly, Francois
    Charbonneau, Eve
    Ceglia, Amedeo
    Sanchez, Lea
    Begon, Mickael
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (01): : 321 - 332