A Python']Python surrogate modeling framework with derivatives

被引:182
|
作者
Bouhlel, Mohamed Amine [1 ]
Hwang, John T. [2 ]
Bartoli, Nathalie [3 ]
Lafage, Remi [3 ]
Morlier, Joseph [4 ]
Martins, Joaquim R. R. A. [1 ]
机构
[1] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
[2] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
[3] Univ Toulouse, ONERA DTIS, Toulouse, France
[4] Univ Toulouse, ISAE SUPAERO, CNRS, ICA,INSA,MINES ALBI,UPS, Toulouse, France
关键词
Surrogate modeling; Gradient-enhanced surrogate modeling; Derivatives; MULTIDISCIPLINARY DESIGN; OPTIMIZATION;
D O I
10.1016/j.advengsoft.2019.03.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The surrogate modeling toolbox (SMT) is an open-source Python package that contains a collection of surrogate modeling methods, sampling techniques, and benchmarking functions. This package provides a library of surrogate models that is simple to use and facilitates the implementation of additional methods. SMT is different from existing surrogate modeling libraries because of its emphasis on derivatives, including training derivatives used for gradient-enhanced modeling, prediction derivatives, and derivatives with respect to training data. It also includes unique surrogate models: kriging by partial least-squares reduction, which scales well with the number of inputs; and energy-minimizing spline interpolation, which scales well with the number of training points. The efficiency and effectiveness of SMT are demonstrated through a series of examples. SMT is documented using custom tools for embedding automatically tested code and dynamically generated plots to produce high-quality user guides with minimal effort from contributors. SMT is maintained in a public version control repository.(1)
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [31] PyRoboLearn: A Python']Python Framework for Robot Learning Practitioners
    Delhaisse, Brian
    Rozo, Leonel
    Caldwell, Darwin G.
    CONFERENCE ON ROBOT LEARNING, VOL 100, 2019, 100
  • [32] The EVcouplings Python']Python framework for coevolutionary sequence analysis
    Hopf, Thomas A.
    Green, Anna G.
    Schubert, Benjamin
    Mersmann, Sophia
    Schaerfe, Charlotta P. I.
    Ingraham, John B.
    Toth-Petroczy, Agnes
    Brock, Kelly
    Riesselman, Adam J.
    Palmedo, Perry
    Kang, Chan
    Sheridan, Robert
    Draizen, Eli J.
    Dallago, Christian
    Sander, Chris
    Marks, Debora S.
    BIOINFORMATICS, 2019, 35 (09) : 1582 - 1584
  • [33] PyFUNS: A Python']Python Framework for Ubiquitous Networked Sensors
    Bocchino, Stefano
    Fedor, Szymon
    Petracca, Matteo
    WIRELESS SENSOR NETWORKS (EWSN 2015), 2015, 8965 : 1 - 18
  • [34] TurboPy: A lightweight python']python framework for computational physics
    Richardson, A. S.
    Gordon, D. F.
    Swanekamp, S. B.
    Rittersdorf, I. M.
    Adamson, P. E.
    Grannis, O. S.
    Morgan, G. T.
    Ostenfeld, A.
    Phlips, K. L.
    Sun, C. G.
    Tang, G.
    Watkins, D. J.
    COMPUTER PHYSICS COMMUNICATIONS, 2021, 258
  • [35] A Python']Python framework for microphone array data processing
    Sarradj, Ennes
    Herold, Gert
    APPLIED ACOUSTICS, 2017, 116 : 50 - 58
  • [36] MLXP: A Framework for Conducting Replicable Experiments in Python']Python
    Arbel, Michael
    Zouaoui, Alexandre
    PROCEEDINGS OF THE 2ND ACM CONFERENCE ON REPRODUCIBILITY AND REPLICABILITY, ACM REP 2024, 2024, : 134 - 144
  • [37] Pytos: a Framework for Mobile Computation Offloading in Python']Python
    Soto Mendoza, Enrique A.
    da Conceicao, Arlindo F.
    Mamani-Aliaga, Alvaro H.
    Vieira, Dario
    2015 11TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS (SITIS), 2015, : 262 - 269
  • [38] A python']python framework for environmental model uncertainty analysis
    White, Jeremy T.
    Fienen, Michael N.
    Doherty, John E.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2016, 85 : 217 - 228
  • [39] VecMetaPy: A vectorized framework for metaheuristic optimization in Python']Python
    Hemmasian, AmirPouya
    Meidani, Kazem
    Mirjalili, Seyedali
    Farimani, Amir Barati
    ADVANCES IN ENGINEERING SOFTWARE, 2022, 166
  • [40] pyBSM: A Python']Python package for modeling imaging systems
    LeMaster, Daniel A.
    Eismann, Michael T.
    LONG-RANGE IMAGING II, 2017, 10204